--- language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer metrics: - wer model-index: - name: ./500 results: [] --- # ./500 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the 500 SF 1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.7070 - Wer Ortho: 28.9359 - Wer: 18.7657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 1.6528 | 3.1746 | 100 | 1.1367 | 40.6706 | 29.8170 | | 0.8589 | 6.3492 | 200 | 0.7969 | 30.5029 | 20.0215 | | 0.6147 | 9.5238 | 300 | 0.7363 | 28.9359 | 18.7298 | | 0.5156 | 12.6984 | 400 | 0.7134 | 28.7536 | 18.8375 | | 0.4706 | 15.8730 | 500 | 0.7070 | 28.9359 | 18.7657 | ### Framework versions - Transformers 4.44.0 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1