--- language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer metrics: - wer model-index: - name: ./500 results: [] --- # ./500 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the 500 SF 1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.6792 - Wer Ortho: 31.5962 - Wer: 21.0621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 1.6525 | 3.1746 | 100 | 1.1367 | 40.1968 | 29.4223 | | 0.8573 | 6.3492 | 200 | 0.7964 | 30.8309 | 20.3803 | | 0.6108 | 9.5238 | 300 | 0.7344 | 28.6808 | 18.9092 | | 0.4957 | 12.6984 | 400 | 0.7017 | 29.1181 | 18.7298 | | 0.4164 | 15.8730 | 500 | 0.6860 | 29.2274 | 18.8016 | | 0.3577 | 19.0476 | 600 | 0.6802 | 29.3367 | 18.6939 | | 0.3168 | 22.2222 | 700 | 0.6787 | 31.2682 | 20.7750 | | 0.3023 | 25.3968 | 800 | 0.6792 | 31.5962 | 21.0621 | ### Framework versions - Transformers 4.44.0 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1