--- language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer metrics: - wer model-index: - name: ./600 results: [] --- # ./600 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the 600 SF 1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.6509 - Wer Ortho: 30.9402 - Wer: 20.0933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 1.6008 | 2.6667 | 100 | 1.0986 | 41.0350 | 29.9605 | | 0.8522 | 5.3333 | 200 | 0.7925 | 32.0335 | 21.0621 | | 0.6516 | 8.0 | 300 | 0.7207 | 30.5029 | 19.9856 | | 0.5337 | 10.6667 | 400 | 0.6885 | 30.5758 | 20.3803 | | 0.4489 | 13.3333 | 500 | 0.6709 | 31.0496 | 20.3086 | | 0.4003 | 16.0 | 600 | 0.6577 | 31.0496 | 20.2727 | | 0.3588 | 18.6667 | 700 | 0.6533 | 31.0496 | 20.0933 | | 0.3499 | 21.3333 | 800 | 0.6509 | 30.9402 | 20.0933 | ### Framework versions - Transformers 4.44.0 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1