--- language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer metrics: - wer model-index: - name: ./800 results: [] --- # ./800 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the 800 SF 1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.6191 - Wer Ortho: 30.5394 - Wer: 20.0215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 1.2835 | 2.0 | 100 | 0.7681 | 30.5758 | 19.3039 | | 0.5883 | 4.0 | 200 | 0.6235 | 27.6968 | 17.5099 | | 0.3246 | 6.0 | 300 | 0.5332 | 29.4461 | 19.6268 | | 0.1851 | 8.0 | 400 | 0.5366 | 34.6574 | 23.3226 | | 0.1133 | 10.0 | 500 | 0.5747 | 29.9198 | 19.0886 | | 0.0837 | 12.0 | 600 | 0.5947 | 30.1020 | 19.9498 | | 0.0697 | 14.0 | 700 | 0.6128 | 30.3571 | 20.4521 | | 0.0622 | 16.0 | 800 | 0.6191 | 30.5394 | 20.0215 | ### Framework versions - Transformers 4.44.0 - Pytorch 1.13.1+cu117 - Datasets 2.21.0 - Tokenizers 0.19.1