--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - LLM360/AmberChat - wannaphong/han-llm-7b-v2 base_model: - LLM360/AmberChat - wannaphong/han-llm-7b-v2 --- # HanAmber-7b-MOE HanAmber-7b-MOE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [LLM360/AmberChat](https://huggingface.co/LLM360/AmberChat) * [wannaphong/han-llm-7b-v2](https://huggingface.co/wannaphong/han-llm-7b-v2) ## 🧩 Configuration ```yaml base_model: LLM360/AmberChat dtype: float16 gate_mode: cheap_embed experts: - source_model: LLM360/AmberChat positive_prompts: ["You are an helpful as general-pupose assistant."] - source_model: wannaphong/han-llm-7b-v2 positive_prompts: - "คุณช่วยฉันหน่อยได้ไหม" - "คุณช่วยแปลประโยคนี้เป็นภาษาไทยได้ไหม" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Manichik/HanAmber-7b-MOE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```