--- base_model: google/pegasus-large tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: LifeSciencePegasusLargeModel results: [] --- # LifeSciencePegasusLargeModel This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.6523 - Rouge1: 44.7761 - Rouge2: 12.6726 - Rougel: 29.0847 - Rougelsum: 40.7566 - Bertscore Precision: 77.9283 - Bertscore Recall: 81.5854 - Bertscore F1: 79.7092 - Bleu: 0.0886 - Gen Len: 225.7220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | Bleu | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------------------:|:----------------:|:------------:|:------:|:--------:| | 6.2586 | 0.2643 | 300 | 6.0453 | 40.1947 | 11.1082 | 26.9714 | 36.2747 | 76.6344 | 80.8385 | 78.6731 | 0.0775 | 225.7220 | | 6.0213 | 0.5286 | 600 | 5.7899 | 43.2445 | 12.1722 | 28.4564 | 39.1524 | 77.5194 | 81.3755 | 79.3945 | 0.0856 | 225.7220 | | 5.9018 | 0.7929 | 900 | 5.6523 | 44.7761 | 12.6726 | 29.0847 | 40.7566 | 77.9283 | 81.5854 | 79.7092 | 0.0886 | 225.7220 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.2.1 - Tokenizers 0.19.1