--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.8 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9403 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1046 | 1.0 | 113 | 2.0205 | 0.54 | | 1.3571 | 2.0 | 226 | 1.3759 | 0.57 | | 1.0786 | 3.0 | 339 | 1.0393 | 0.72 | | 0.6829 | 4.0 | 452 | 0.8594 | 0.73 | | 0.6606 | 5.0 | 565 | 0.8099 | 0.75 | | 0.4678 | 6.0 | 678 | 0.7673 | 0.76 | | 0.2307 | 7.0 | 791 | 0.6926 | 0.78 | | 0.0839 | 8.0 | 904 | 0.8226 | 0.77 | | 0.0531 | 9.0 | 1017 | 0.7695 | 0.82 | | 0.0197 | 10.0 | 1130 | 0.8962 | 0.79 | | 0.0136 | 11.0 | 1243 | 0.8740 | 0.81 | | 0.0105 | 12.0 | 1356 | 0.8661 | 0.79 | | 0.0088 | 13.0 | 1469 | 0.9343 | 0.8 | | 0.0082 | 14.0 | 1582 | 0.9394 | 0.8 | | 0.007 | 15.0 | 1695 | 0.9403 | 0.8 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1