--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-ATCOSIM results: [] --- # whisper-medium-ATCOSIM This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0993 - Wer: 4.5786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 12500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 0.0448 | 1.0460 | 1000 | 0.0953 | 6.5544 | | 0.0192 | 2.0921 | 2000 | 0.0926 | 4.5786 | | 0.0098 | 3.1381 | 3000 | 0.1084 | 5.3088 | | 0.0079 | 4.1841 | 4000 | 0.0894 | 4.9609 | | 0.0051 | 5.2301 | 5000 | 0.0971 | 4.5658 | | 0.0027 | 6.2762 | 6000 | 0.0946 | 4.2050 | | 0.0023 | 7.3222 | 7000 | 0.1061 | 4.8406 | | 0.001 | 8.3682 | 8000 | 0.1013 | 4.6302 | | 0.0006 | 9.4142 | 9000 | 0.1041 | 4.8535 | | 0.0004 | 10.4603 | 10000 | 0.1057 | 4.8063 | | 0.0001 | 11.5063 | 11000 | 0.1033 | 4.6731 | | 0.0002 | 12.5523 | 12000 | 0.0993 | 4.5786 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1