--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - voxpopuli metrics: - wer model-index: - name: wav2vec2-classic-300m-norwegian-colab-hung results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: voxpopuli type: voxpopuli config: fi split: test args: fi metrics: - name: Wer type: wer value: 1.7882131661442007 --- # wav2vec2-classic-300m-norwegian-colab-hung This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 3.8820 - Wer: 1.7882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7686 | 2.57 | 400 | 2.9953 | 1.0 | | 2.5005 | 5.14 | 800 | 2.2739 | 1.9808 | | 1.6554 | 7.72 | 1200 | 2.4720 | 1.6708 | | 1.1995 | 10.29 | 1600 | 2.2613 | 1.2480 | | 0.8972 | 12.86 | 2000 | 2.7599 | 1.8873 | | 0.6962 | 15.43 | 2400 | 3.2783 | 1.9560 | | 0.5554 | 18.01 | 2800 | 3.2272 | 1.7544 | | 0.4234 | 20.58 | 3200 | 3.0755 | 1.5645 | | 0.3341 | 23.15 | 3600 | 3.5022 | 1.7442 | | 0.2832 | 25.72 | 4000 | 3.7905 | 1.8324 | | 0.2293 | 28.3 | 4400 | 3.8820 | 1.7882 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0