--- license: apache-2.0 base_model: facebook/wav2vec2-lv-60-espeak-cv-ft tags: - generated_from_trainer datasets: - nb_samtale metrics: - wer model-index: - name: wav2vec2-efeat-300m-norwegian-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nb_samtale type: nb_samtale config: annotations split: test args: annotations metrics: - name: Wer type: wer value: 1.0 --- # wav2vec2-efeat-300m-norwegian-colab This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the nb_samtale dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 123.8826 | 2.57 | 400 | nan | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0