# #1 import pandas as pd import numpy as np from datasets import load_dataset from tensorflow import keras from keras.layers import Dense, Dropout, BatchNormalization from keras.optimizers import Adam from keras.callbacks import EarlyStopping from sklearn.model_selection import train_test_split # #2 # Загрузка данных heart = load_dataset("MaxJalo/CardioAI", split = 'train') # #3 data = pd.DataFrame(heart, columns=["age", "gender", "height", "weight", "ap_hi", "ap_lo", "cholesterol", "gluc", "smoke", "alco", "active", 'cardio']) # #4 X_for_train = data.drop(['cardio'], axis=1).values X_min = np.min(X_for_train, axis=0) X_max = np.max(X_for_train, axis=0) X_normalized = (X_for_train - X_min) / (X_max - X_min) y_normalized = data['cardio'].values X_train, X_test, y_train, y_test = train_test_split(X_normalized, y_normalized, test_size=0.1, random_state=77) print(X_train) # #5 model = Sequential() model.add(Dense(1, input_dim=X_train.shape[1], activation='linear', kernel_regularizer='l2')) # model.add(Dense(16, activation='elu', kernel_regularizer='l2')) # model.add(Dense(16, activation='elu', kernel_regularizer='l2')) model.add(Dense(1, activation='linear')) model.compile(optimizer='adam', loss='mse') # #6 early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True) history = model.fit(X_train, y_train, epochs=100, batch_size=50, validation_split=0.1, callbacks=[early_stopping], verbose=1) # #8 test_loss = model.evaluate(X_test, y_test) print(f'Test loss (MSE): {test_loss}') # #9 def webai(user_input): user_input_clear = user_input input_data = [user_input_clear] input_data_scaled = (input_data - X_min) / (X_max - X_min) print(input_data_scaled) # Получаем предсказание от модели predicted_result_scaled = model.predict(input_data_scaled) print(predicted_result_scaled[0][0] * 100) # 35 0 190 75 120 80 1 1 0 0 1 # 35 0 170 90 130 90 1 1 0 0 0 # 39 0 156 45 110 80 2 1 0 0 0 # 47 1 168 87 120 80 2 1 1 1 1 # 37 0 185 75 120 80 2 1 1 1 0 return f"{round(predicted_result_scaled[0][0] * 100, 2)}%"