--- base_model: mistralai/Mistral-7B-Instruct-v0.1 inference: false license: apache-2.0 model_creator: mistralai model_name: Mistral-7B-Instruct-v0.1-GPTQ pipeline_tag: text-generation quantized_by: MaziyarPanahi tags: - finetuned - quantized - 4-bit - gptq - transformers - pytorch - safetensors - mistral - text-generation - finetuned - arxiv:2310.06825 - license:apache-2.0 - autotrain_compatible - has_space - text-generation-inference - region:us --- # Description [MaziyarPanahi/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.1-GPTQ) is a quantized (GPTQ) version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python Code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/Mistral-7B-Instruct-v0.1-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ```