---
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
- alpaca
- mixtral
- nous_hermes
- peft
- lora
- qlora
- adapter
- finetune
- transformers
base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
model-index:
- name: Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca
results: []
pipeline_tag: text-generation
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
model_type: MixtralForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
hub_model_id: MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca
hf_use_auth_token: true
load_in_4bit: true
strict: false
datasets:
- path: tatsu-lab/alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out
# save_safetensors: true
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
# - gate
- q_proj
# - k_proj
- v_proj
# - o_proj
# - w1
# - w2
# - w3
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
# Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0276
## How to use
**PEFT**
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
config = PeftConfig.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
model = AutoModelForCausalLM.from_pretrained("NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT")
model = PeftModel.from_pretrained(model, "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
```
**Transformers**
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
```
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3912 | 0.01 | 1 | 1.3714 |
| 1.0321 | 0.25 | 45 | 1.0427 |
| 1.0312 | 0.51 | 90 | 1.0327 |
| 0.9917 | 0.76 | 135 | 1.0276 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.0