--- license: apache-2.0 tags: - axolotl - generated_from_trainer - alpaca - mixtral - nous_hermes - peft - lora - qlora - adapter - finetune - transformers base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT model-index: - name: Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca results: [] pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT model_type: MixtralForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true hub_model_id: MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca hf_use_auth_token: true load_in_4bit: true strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out # save_safetensors: true adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: # - gate - q_proj # - k_proj - v_proj # - o_proj # - w1 # - w2 # - w3 wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0276 ## How to use **PEFT** ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM config = PeftConfig.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") model = AutoModelForCausalLM.from_pretrained("NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT") model = PeftModel.from_pretrained(model, "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") ``` **Transformers** ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca") ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3912 | 0.01 | 1 | 1.3714 | | 1.0321 | 0.25 | 45 | 1.0427 | | 1.0312 | 0.51 | 90 | 1.0327 | | 0.9917 | 0.76 | 135 | 1.0276 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.0