--- library_name: peft tags: - axolotl - generated_from_trainer - moe - qwen - text-generation-inference base_model: MaziyarPanahi/Qwen1.5-8x7b model-index: - name: Qwen1.5-8x7b-v0.1 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: MaziyarPanahi/Qwen1.5-8x7b model_type: Qwen2ForCausalLM tokenizer_type: Qwen2Tokenizer trust_remote_code: true hub_model_id: MaziyarPanahi/Qwen1.5-8x7b-v0.1 hf_use_auth_token: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Crystalcareai/MoD-150k type: sharegpt dataset_prepared_path: val_set_size: 0.05 output_dir: ./Qwen1.5-8x7b-v0.1-lora-out model_config: output_router_logits: true adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Qwen1.5-8x7b-v0.1 This model is a fine-tuned version of [MaziyarPanahi/Qwen1.5-8x7b](https://huggingface.co/MaziyarPanahi/Qwen1.5-8x7b) on the [Crystalcareai/MoD-150k](https://huggingface.co/datasets/Crystalcareai/MoD-150k) dataset. It achieves the following results on the evaluation set: - Loss: 0.7945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.2196 | 0.0 | 1 | 6.1942 | | 0.7772 | 0.25 | 513 | 0.8037 | | 0.656 | 0.5 | 1026 | 0.7977 | | 0.6967 | 0.75 | 1539 | 0.7945 | ### Framework versions - PEFT 0.8.2 - Transformers 4.39.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.0