--- license: apache-2.0 tags: - axolotl - generated_from_trainer - gemma - 7b - alpaca - peft - lora - qlora - openhermes - transformers base_model: google/gemma-7b model-index: - name: gemma-7b-Open-Hermes-v0.1 results: [] datasets: - teknium/openhermes pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # use google/gemma-7b if you have access #base_model: mhenrichsen/gemma-7b base_model: google/gemma-7b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer hub_model_id: MaziyarPanahi/gemma-7b-Open-Hermes-v0.1 hf_use_auth_token: true load_in_8bit: false load_in_4bit: true strict: false # huggingface repo datasets: - path: teknium/openhermes type: alpaca val_set_size: 0.1 output_dir: ./qlora-gemma-7b-openhermes adapter: qlora lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true sequence_len: 4096 sample_packing: false pad_to_sequence_len: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 3 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# gemma-7b-Open-Hermes-v0.1 This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4456 ## How to use **PEFT** ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1" config = PeftConfig.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained("google/gemma-7b") model = PeftModel.from_pretrained(model, model_id) ``` **Transformers** ```python # Use a pipeline as a high-level helper from transformers import pipeline model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1" pipe = pipeline("text-generation", model=model_id) # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 227 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3258 | 0.0 | 1 | 1.9697 | | 0.63 | 0.25 | 2277 | 1.5227 | | 0.642 | 0.5 | 4554 | 1.4835 | | 0.7721 | 0.75 | 6831 | 1.4456 | ### Framework versions - PEFT 0.8.2 - Transformers 4.39.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.0