--- language: - ar tags: - hf-asr-leaderboard - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: Whisper Small - Arabic language results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 46.54301717014048 --- # Whisper Small - Arabic language This model is a fine-tuned version of [MohammadJamalaldeen/whisper-small-with-google-fleurs-ar-4000_steps](https://huggingface.co/MohammadJamalaldeen/whisper-small-with-google-fleurs-ar-4000_steps) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3383 - Wer: 46.5430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.347 | 0.2 | 1000 | 0.4275 | 53.6902 | | 0.2591 | 0.39 | 2000 | 0.3821 | 49.4996 | | 0.2681 | 0.59 | 3000 | 0.3503 | 47.5989 | | 0.271 | 0.78 | 4000 | 0.3383 | 46.5430 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.7.0 - Tokenizers 0.13.2