--- language: - ru tags: - sentiment - text-classification datasets: - Tatyana/ru_sentiment_dataset --- # Model Card for RuBERT for Sentiment Analysis # Model Details ## Model Description Russian texts sentiment classification. - **Developed by:** Tatyana Voloshina - **Shared by [Optional]:** Tatyana Voloshina - **Model type:** Text Classification - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** BERT - **Resources for more information:** - [GitHub Repo](https://github.com/T-Sh/Sentiment-Analysis) # Uses ## Direct Use This model can be used for the task of text classification. ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data Model trained on [Tatyana/ru_sentiment_dataset](https://huggingface.co/datasets/Tatyana/ru_sentiment_dataset) ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination ## Labels meaning 0: NEUTRAL 1: POSITIVE 2: NEGATIVE # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation More information needed. # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Tatyana Voloshina in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model.
Click to expand Needed pytorch trained model presented in [Drive](https://drive.google.com/drive/folders/1EnJBq0dGfpjPxbVjybqaS7PsMaPHLUIl?usp=sharing). Load and place model.pth.tar in folder next to another files of a model. ```python !pip install tensorflow-gpu !pip install deeppavlov !python -m deeppavlov install squad_bert !pip install fasttext !pip install transformers !python -m deeppavlov install bert_sentence_embedder from deeppavlov import build_model model = build_model(path_to_model/rubert_sentiment.json) model(["Сегодня хорошая погода", "Я счастлив проводить с тобою время", "Мне нравится эта музыкальная композиция"]) ```