--- license: apache-2.0 datasets: - BAAI/IndustryInstruction_Automobiles base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct --- This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Automobiles](https://huggingface.co/datasets/BAAI/IndustryInstruction_Automobiles) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co/datasets/BAAI/IndustryInstruction) ## training params The training framework is llama-factory, template=llama3 ``` learning_rate=1e-5 lr_scheduler_type=cosine max_length=2048 warmup_ratio=0.05 batch_size=64 epoch=10 ``` select best ckpt by the evaluation loss ## evaluation Duto to there is no evaluation benchmark, we can not eval the model ## How to use ```python # !/usr/bin/env python # -*- coding:utf-8 -*- # ================================================================== # [Author] : xiaofeng # [Descriptions] : # ================================================================== from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch llama3_jinja = """{% if messages[0]['role'] == 'system' %} {% set offset = 1 %} {% else %} {% set offset = 0 %} {% endif %} {{ bos_token }} {% for message in messages %} {% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %} {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} {% endif %} {{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }} {% endfor %} {% if add_generation_prompt %} {{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }} {% endif %}""" dtype = torch.bfloat16 model_dir = "MonteXiaofeng/Automobile-llama3_1_8B_instruct" model = AutoModelForCausalLM.from_pretrained( model_dir, device_map="cuda", torch_dtype=dtype, ) tokenizer = AutoTokenizer.from_pretrained(model_dir) tokenizer.chat_template = llama3_jinja # update template message = [ {"role": "system", "content": "You are a helpful assistant"}, { "role": "user", "content": "随着特斯拉和小米汽车等新势力的崛起,传统车企如何应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型?", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) print(prompt) inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") prompt_length = len(inputs[0]) print(f"prompt_length:{prompt_length}") generating_args = { "do_sample": True, "temperature": 1.0, "top_p": 0.5, "top_k": 15, "max_new_tokens": 512, } generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args) response_ids = generate_output[:, prompt_length:] response = tokenizer.batch_decode( response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] print(f"response:{response}") """ 传统车企应积极拥抱互联网和科技公司的挑战,加速向智能化、电动化的方向转型。首先,车企需要加强与科技公司的合作,利用其在人工智能、自动驾驶等领域的技术优势,提升自身产品的智能化水平。其次,车企应加大在电动化领域的投入,研发更多电动车型,满足市场对环保、节能的需求。同时,车企还应加强与电池供应商的合作,提升电动车的续航里程和充电速度,提高用户体验。此外,车企还应加强在智能互联方面的投入,提供更好的车联网服务,满足用户对智能化、便捷化的需求。总之,传统车企应积极应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型,以适应市场的变化,保持竞争力 """ ```