---
language:
- en
license: mit
tags:
- text-classification
- zero-shot-classification
metrics:
- accuracy
datasets:
- multi_nli
- anli
- fever
pipeline_tag: zero-shot-classification
model-index:
- name: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
  results:
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: anli
      type: anli
      config: plain_text
      split: test_r3
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.495
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.4984740618243923
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.495
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.4984357572868885
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.49461028192371476
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.495
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.495
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.4942810999491704
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.495
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.4944671868893595
      verified: true
    - name: loss
      type: loss
      value: 1.8788293600082397
      verified: true
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: anli
      type: anli
      config: plain_text
      split: test_r1
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.712
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.7134839439315348
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.712
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.7134676028447461
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.7119814425203647
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.712
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.712
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.7119226991285647
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.712
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.7119242267218338
      verified: true
    - name: loss
      type: loss
      value: 1.0105403661727905
      verified: true
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: multi_nli
      type: multi_nli
      config: default
      split: validation_mismatched
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.902766476810415
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9023816542652491
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.902766476810415
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9034597464719761
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.9024304801555488
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.902766476810415
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.902766476810415
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9023086094638595
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.902766476810415
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9030161011457231
      verified: true
    - name: loss
      type: loss
      value: 0.3283354640007019
      verified: true
---
# DeBERTa-v3-base-mnli-fever-anli
## Model description
This model was trained on the MultiNLI, Fever-NLI and Adversarial-NLI (ANLI) datasets, which comprise 763 913 NLI hypothesis-premise pairs. This base model outperforms almost all large models on the [ANLI benchmark](https://github.com/facebookresearch/anli). 
The base model is [DeBERTa-v3-base from Microsoft](https://huggingface.co/microsoft/deberta-v3-base). The v3 variant of DeBERTa substantially outperforms previous versions of the model by including a different pre-training objective, see annex 11 of the original [DeBERTa paper](https://arxiv.org/pdf/2006.03654.pdf). 

For highest performance (but less speed), I recommend using https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli.


### How to use the model
#### Simple zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
sequence_to_classify = "Angela Merkel is a politician in Germany and leader of the CDU ist eine Politikerin in Deutschland und Vorsitzende der CDU"
candidate_labels = ["politics", "economy", "entertainment", "environment"]
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
print(output)
```
#### NLI use-case
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_name = "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing."
hypothesis = "The movie was good."

input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device))  # device = "cuda:0" or "cpu"
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
print(prediction)
```
### Training data
DeBERTa-v3-base-mnli-fever-anli was trained on the MultiNLI, Fever-NLI and Adversarial-NLI (ANLI) datasets, which comprise 763 913 NLI hypothesis-premise pairs.

### Training procedure
DeBERTa-v3-base-mnli-fever-anli was trained using the Hugging Face trainer with the following hyperparameters.
```
training_args = TrainingArguments(
    num_train_epochs=3,              # total number of training epochs
    learning_rate=2e-05,
    per_device_train_batch_size=32,   # batch size per device during training
    per_device_eval_batch_size=32,    # batch size for evaluation
    warmup_ratio=0.1,                # number of warmup steps for learning rate scheduler
    weight_decay=0.06,               # strength of weight decay
    fp16=True                        # mixed precision training
)
```
### Eval results
The model was evaluated using the test sets for MultiNLI and ANLI and the dev set for Fever-NLI. The metric used is accuracy.

mnli-m | mnli-mm | fever-nli | anli-all | anli-r3
---------|----------|---------|----------|----------
0.903 | 0.903 | 0.777 | 0.579 | 0.495

## Limitations and bias
Please consult the original DeBERTa paper and literature on different NLI datasets for potential biases. 

## Citation
If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k.

### Ideas for cooperation or questions?
If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)

### Debugging and issues
Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues.