--- language: - ar license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Arabic - Mostafa Khedr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: None args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 38.02222018180149 --- # Whisper Medium Arabic - Mostafa Khedr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2691 - Wer: 38.0222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2453 | 0.4156 | 1000 | 0.3289 | 42.9602 | | 0.2326 | 0.8313 | 2000 | 0.2976 | 42.0990 | | 0.139 | 1.2469 | 3000 | 0.2883 | 41.0376 | | 0.1081 | 1.6625 | 4000 | 0.2720 | 39.0763 | | 0.0543 | 2.0781 | 5000 | 0.2691 | 38.0222 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1