--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-512 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.8448 --- # t5-small-finetuned-xsum-512 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4706 - Rouge1: 28.8448 - Rouge2: 7.9819 - Rougel: 22.8686 - Rougelsum: 22.8754 - Gen Len: 18.7654 T5, zero-shot on the same evaluation set: `{'rouge1': 19.2304, 'rouge2': 2.5842, 'rougeL': 13.9683, 'rougeLsum': 15.516}` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7057 | 1.0 | 7854 | 2.4706 | 28.8448 | 7.9819 | 22.8686 | 22.8754 | 18.7654 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.1.0 - Tokenizers 0.12.1