--- language: - en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:1K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("MugheesAwan11/bge-base-financial-matryoshka") # Run inference sentences = [ 'The net earnings margin in 2023 was 6.0%.', 'What was the net earnings margin in 2023?', 'What caused the slight decline in Workforce Solutions revenue in 2023?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7257 | | cosine_accuracy@3 | 0.8514 | | cosine_accuracy@5 | 0.8829 | | cosine_accuracy@10 | 0.9143 | | cosine_precision@1 | 0.7257 | | cosine_precision@3 | 0.2838 | | cosine_precision@5 | 0.1766 | | cosine_precision@10 | 0.0914 | | cosine_recall@1 | 0.7257 | | cosine_recall@3 | 0.8514 | | cosine_recall@5 | 0.8829 | | cosine_recall@10 | 0.9143 | | cosine_ndcg@10 | 0.8233 | | cosine_mrr@10 | 0.7938 | | **cosine_map@100** | **0.7966** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7257 | | cosine_accuracy@3 | 0.8543 | | cosine_accuracy@5 | 0.8757 | | cosine_accuracy@10 | 0.91 | | cosine_precision@1 | 0.7257 | | cosine_precision@3 | 0.2848 | | cosine_precision@5 | 0.1751 | | cosine_precision@10 | 0.091 | | cosine_recall@1 | 0.7257 | | cosine_recall@3 | 0.8543 | | cosine_recall@5 | 0.8757 | | cosine_recall@10 | 0.91 | | cosine_ndcg@10 | 0.8215 | | cosine_mrr@10 | 0.7928 | | **cosine_map@100** | **0.7959** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.71 | | cosine_accuracy@3 | 0.85 | | cosine_accuracy@5 | 0.8671 | | cosine_accuracy@10 | 0.9086 | | cosine_precision@1 | 0.71 | | cosine_precision@3 | 0.2833 | | cosine_precision@5 | 0.1734 | | cosine_precision@10 | 0.0909 | | cosine_recall@1 | 0.71 | | cosine_recall@3 | 0.85 | | cosine_recall@5 | 0.8671 | | cosine_recall@10 | 0.9086 | | cosine_ndcg@10 | 0.8139 | | cosine_mrr@10 | 0.7833 | | **cosine_map@100** | **0.7863** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6814 | | cosine_accuracy@3 | 0.8157 | | cosine_accuracy@5 | 0.8586 | | cosine_accuracy@10 | 0.8943 | | cosine_precision@1 | 0.6814 | | cosine_precision@3 | 0.2719 | | cosine_precision@5 | 0.1717 | | cosine_precision@10 | 0.0894 | | cosine_recall@1 | 0.6814 | | cosine_recall@3 | 0.8157 | | cosine_recall@5 | 0.8586 | | cosine_recall@10 | 0.8943 | | cosine_ndcg@10 | 0.7915 | | cosine_mrr@10 | 0.7582 | | **cosine_map@100** | **0.7616** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.66 | | cosine_accuracy@3 | 0.78 | | cosine_accuracy@5 | 0.8071 | | cosine_accuracy@10 | 0.87 | | cosine_precision@1 | 0.66 | | cosine_precision@3 | 0.26 | | cosine_precision@5 | 0.1614 | | cosine_precision@10 | 0.087 | | cosine_recall@1 | 0.66 | | cosine_recall@3 | 0.78 | | cosine_recall@5 | 0.8071 | | cosine_recall@10 | 0.87 | | cosine_ndcg@10 | 0.7637 | | cosine_mrr@10 | 0.7301 | | **cosine_map@100** | **0.7343** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 6,300 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------| | Insurance Medical Membership at December 31, 2020 for Florida includes Individual Medicare Advantage (851.3 thousand), Group Medicare Advantage (9.1 thousand), Medicare stand-alone PDP (131.9 thousand), Medicare Supplement (17.5 thousand), State-based contracts and Other (656.6 thousand), Fully-insured commercial Group (73.8 thousand), ASO (24.5 thousand), totaling 1,764.7 thousand members. | How is Florida's total insurance medical membership detailed in the data for December 31, 2023? | | For the year ended December 31, 2023, the total provision for income taxes was $836 million, which includes both current and deferred tax amounts. | What was the total provision for income taxes at the end of 2023? | | Pursuant to the IRA, under Sections 48, 48E and 25D of the Internal Revenue Code (“IRC”), standalone energy storage technology is eligible for a tax credit between 6% and 50% of qualified expenditures, regardless of the source of energy, which may be claimed by our customers for storage systems they purchase or by us for arrangements where we own the systems. | Under what sections of the Internal Revenue Code can standalone energy storage technology receive a tax credit? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.8122 | 10 | 1.4587 | - | - | - | - | - | | 0.9746 | 12 | - | 0.7544 | 0.7722 | 0.7809 | 0.7118 | 0.7804 | | 1.6244 | 20 | 0.6938 | - | - | - | - | - | | **1.9492** | **24** | **-** | **0.7586** | **0.779** | **0.7876** | **0.7197** | **0.785** | | 0.8122 | 10 | 0.5238 | - | - | - | - | - | | 0.9746 | 12 | - | 0.7602 | 0.7815 | 0.7928 | 0.7285 | 0.7942 | | 1.6244 | 20 | 0.4172 | - | - | - | - | - | | **1.9492** | **24** | **-** | **0.7616** | **0.7863** | **0.7959** | **0.7343** | **0.7966** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```