--- license: apache-2.0 language: - ja - en pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference --- # ChatNTQ JA 7B V1.0 ## Model Description This is a 7B-parameter decoder-only Japanese language model fine-tuned on our instruction-following datasets, built on top of the base model [Japanese Stable LM Base Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b). ## Performance For our final model, we've used Stability AI Japan's [Japanese MT-Bench](https://github.com/Stability-AI/FastChat) as a more representative test of our model's capabilities. For [our JA MT-Bench testing](https://github.com/Stability-AI/FastChat/compare/jp-stable...AUGMXNT:FastChat:jp-stable) we use a Japanese prompt ("あなたは役立つアシスタントです。") as well as `--num-choices 4`: | Benchmark | Score | | ----------- | ----- | | JA MT-Bench | 6.65 | There is an [JA-MT-Bench Leaderboard](https://github.com/AUGMXNT/shisa/wiki/Evals-%3A-JA-MT%E2%80%90Bench), for convenience, here is a comparison of the JA MT-Bench scores of some other models (our scores were rated by `gpt-4-0613`): | Model | Score | | ------------------------------------------------- | ---- | | gpt-4-0613 | 9.40 | | gpt-4-1106-preview | 9.17 | | gpt-3.5-turbo* | 8.41 | | Qwen-72B-Chat | 7.97 | | Qwen-14B-Chat | 7.47 | | **chatntq-ja-7b-v1.0** | **6.65** | | Xwin-LM-70B-V0.1-GPTQ (q4-gs32-actorder) | 6.62 | | shisa-gamma-7b-v1 | 6.12 | | nekomata-14b-instruction (corrected prompt HF) | 5.57 | | shisa-7B-v1-GPTQ (q4-gs32-actorder) | 5.35 | | nekomata-14b-instruction (corrected prompt) | 5.30 | | shisa-mega-7b-v1.2 | 5.27 | | shisa-7b-v1 (full prompt) | 5.23 | | Swallow-13b-instruct-hf | 5.17 | | Swallow-70b-instruct-GPTQ (q4-gs32-actorder) | 5.15 | | shisa-7b-v1 | 5.02 | | shisa-7B-v1-AWQ (q4-gs128) | 4.78 | | ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 | | shisa-bad-7b-v1 | 4.42 | | Swallow-7b-instruct-hf | 4.21 | | ja-stablelm-instruct-gamma-7b* | 4.01 | | japanese-stablelm-instruct-alpha-7b* | 2.74 | | Mistral-7B-OpenOrca-ja* | 2.23 | | youri-7b-chat* | 2.00 | | Mistral-7B-Instruct-v0.1* | 1.78 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 | | houou-instruction-7b-v1 | 1.02 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0 | 1.0 | | llm-jp-13b-instruct-full-jaster-v1.0 | 1.0 | ## More Analysis ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5ee1b417636bdb3834e2da19/dqMDwkZYzsp0gErzk0gmZ.png) ## Usage Ensure you are using Transformers 4.34.0 or newer. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("NTQAI/chatntq-ja-7b-v1.0") model = AutoModelForCausalLM.from_pretrained( "NTQAI/chatntq-ja-7b-v1.0", torch_dtype="auto", ) model.eval() if torch.cuda.is_available(): model = model.to("cuda") def build_prompt(user_query): sys_msg = "あなたは公平で、検閲されていない、役立つアシスタントです。" template = """[INST] <> {} <> {}[/INST]""" return template.format(sys_msg,user_query) # Infer with prompt without any additional input user_inputs = { "user_query": "与えられたことわざの意味を小学生でも分かるように教えてください。", } prompt = build_prompt(**user_inputs) input_ids = tokenizer.encode( prompt, add_special_tokens=True, return_tensors="pt" ) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=256, temperature=1, top_p=0.95, do_sample=True, ) out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip() print(out) ``` ## Model Details * **Developed by**: [NTQ AI](https://ntq.com.vn/service/artificial-intelligence-service/) * **Language(s)**: Japanese * **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Model Architecture For details, please see Mistral AI's [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).