---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1100
- loss:CoSENTLoss
base_model: WhereIsAI/UAE-Large-V1
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: booking_reference
sentences:
- Person
- Person
- Organization
- source_sentence: supply
sentences:
- Time
- Quantity
- Person
- source_sentence: spouse
sentences:
- ID
- Person
- Person
- source_sentence: blood_type
sentences:
- Person
- Geographical
- Organization
- source_sentence: account_id
sentences:
- ID
- Organization
- Quantity
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on WhereIsAI/UAE-Large-V1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8924660010011639
name: Pearson Cosine
- type: spearman_cosine
value: 0.8235197032172585
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8606201562664572
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8165407226815192
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8607526008409677
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8151449265743713
name: Spearman Euclidean
- type: pearson_dot
value: 0.8740992356806746
name: Pearson Dot
- type: spearman_dot
value: 0.8339881740208678
name: Spearman Dot
- type: pearson_max
value: 0.8924660010011639
name: Pearson Max
- type: spearman_max
value: 0.8339881740208678
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev test
type: sts-dev_test
metrics:
- type: pearson_cosine
value: 0.7742742031598305
name: Pearson Cosine
- type: spearman_cosine
value: 0.7349811537106432
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8011822405747617
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7482240573811053
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7973589089683236
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7482240573811053
name: Spearman Euclidean
- type: pearson_dot
value: 0.7745895614088659
name: Pearson Dot
- type: spearman_dot
value: 0.7482240573811053
name: Spearman Dot
- type: pearson_max
value: 0.8011822405747617
name: Pearson Max
- type: spearman_max
value: 0.7482240573811053
name: Spearman Max
---
# SentenceTransformer based on WhereIsAI/UAE-Large-V1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Naveen20o1/UAE_Large_V1_nav2")
# Run inference
sentences = [
'account_id',
'ID',
'Quantity',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8925 |
| **spearman_cosine** | **0.8235** |
| pearson_manhattan | 0.8606 |
| spearman_manhattan | 0.8165 |
| pearson_euclidean | 0.8608 |
| spearman_euclidean | 0.8151 |
| pearson_dot | 0.8741 |
| spearman_dot | 0.834 |
| pearson_max | 0.8925 |
| spearman_max | 0.834 |
#### Semantic Similarity
* Dataset: `sts-dev_test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.7743 |
| **spearman_cosine** | **0.735** |
| pearson_manhattan | 0.8012 |
| spearman_manhattan | 0.7482 |
| pearson_euclidean | 0.7974 |
| spearman_euclidean | 0.7482 |
| pearson_dot | 0.7746 |
| spearman_dot | 0.7482 |
| pearson_max | 0.8012 |
| spearman_max | 0.7482 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,100 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
enrollment
| Quantity
| 1.0
|
| instrument
| Artifact
| 1.0
|
| stock_level
| Geographical
| 0.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 100 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | review
| Quantity
| 0.0
|
| machinery
| Artifact
| 1.0
|
| locality
| Geographical
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 11
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters