--- language: - et license: apache-2.0 base_model: openai/whisper-small tags: - audio - asr - automatic-speech-recognition - hf-asr-leaderboard model-index: - name: whisper-small-smj results: [] --- # whisper-small-smj This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the NbAiLab/salmon-asr-smj dataset. It achieves the following results on the evaluation set: - step: 9999 - validation_loss: 0.3690 - train_loss: 0.2159 - validation_wer: 19.6809 - validation_cer: 5.5037 - validation_exact_wer: 22.3404 - validation_exact_cer: 5.8753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - lr_scheduler_type: linear - per_device_train_batch_size: 32 - total_train_batch_size_per_node: 256 - total_train_batch_size: 256 - total_optimization_steps: 10,000 - starting_optimization_step: None - finishing_optimization_step: 10,000 - num_train_dataset_workers: 32 - num_hosts: 1 - total_num_training_examples: 2,560,000 - steps_per_epoch: 70 - num_beams: None - weight_decay: 0.01 - adam_beta1: 0.9 - adam_beta2: 0.98 - adam_epsilon: 1e-06 - dropout: True - bpe_dropout_probability: 0.2 - activation_dropout_probability: 0.1 ### Training results | step | validation_loss | train_loss | validation_wer | validation_cer | validation_exact_wer | validation_exact_cer | |:----:|:---------------:|:----------:|:--------------:|:--------------:|:--------------------:|:--------------------:| | 0 | 3.4458 | 4.7979 | 205.7181 | 94.0902 | 150.2660 | 95.4591 | | 1000 | 0.8415 | 0.2440 | 21.9415 | 6.4379 | 25.9309 | 7.0106 | | 2000 | 1.0741 | 0.2249 | 21.6755 | 5.7474 | 25.0 | 6.1741 | | 3000 | 0.8933 | 0.2919 | 20.4787 | 5.3615 | 23.9362 | 5.8156 | | 4000 | 0.8445 | 0.1339 | 18.8830 | 5.2193 | 21.4096 | 5.6363 | | 5000 | 0.3739 | 0.2289 | 20.0798 | 5.3818 | 23.2713 | 5.8355 | | 6000 | 0.3746 | 0.2586 | 19.8138 | 5.2600 | 22.7394 | 5.6562 | | 7000 | 0.3555 | 0.2273 | 19.2819 | 5.7067 | 22.3404 | 6.0745 | | 8000 | 0.3671 | 0.1632 | 19.4149 | 5.4224 | 22.3404 | 5.8952 | | 9000 | 0.3508 | 0.2107 | 18.3511 | 5.3006 | 21.2766 | 5.7160 | | 9999 | 0.3690 | 0.2159 | 19.6809 | 5.5037 | 22.3404 | 5.8753 | ### Framework versions - Transformers 4.34.1 - Datasets 2.14.5 - Tokenizers 0.14.1