--- language: - 'no' license: apache-2.0 base_model: NbAiLab/nb-whisper-small-v0.8-vad3 tags: - audio - asr - automatic-speech-recognition - hf-asr-leaderboard model-index: - name: nb-whisper-small-v0.8-vad3-verbatim results: [] --- # nb-whisper-small-v0.8-vad3-verbatim This model is a fine-tuned version of [NbAiLab/nb-whisper-small-v0.8-vad3](https://huggingface.co/NbAiLab/nb-whisper-small-v0.8-vad3) on the NbAiLab/NPSC dataset. It achieves the following results on the evaluation set: - step: 249 - validation_loss: 0.5783 - train_loss: 0.4395 - validation_wer: 9.3843 - validation_cer: 3.1287 - validation_exact_wer: 9.5329 - validation_exact_cer: 3.1513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - lr_scheduler_type: linear - per_device_train_batch_size: 32 - total_train_batch_size_per_node: 128 - total_train_batch_size: 1024 - total_optimization_steps: 250 - starting_optimization_step: None - finishing_optimization_step: 250 - num_train_dataset_workers: 32 - num_hosts: 8 - total_num_training_examples: 256,000 - steps_per_epoch: 45 - num_beams: None - weight_decay: 0.01 - adam_beta1: 0.9 - adam_beta2: 0.98 - adam_epsilon: 1e-06 - dropout: True - bpe_dropout_probability: 0.2 - activation_dropout_probability: 0.1 ### Training results | step | validation_loss | train_loss | validation_wer | validation_cer | validation_exact_wer | validation_exact_cer | |:----:|:---------------:|:----------:|:--------------:|:--------------:|:--------------------:|:--------------------:| | 0 | 1.4467 | 1.3978 | 19.2607 | 12.0780 | 34.1889 | 15.2244 | | 40 | 0.5979 | 0.5311 | 10.8048 | 3.6534 | 10.9488 | 3.6881 | | 80 | 0.5743 | 0.4963 | 9.9323 | 3.3896 | 10.0745 | 3.4130 | | 120 | 0.5719 | 0.4591 | 9.8317 | 3.3754 | 9.9447 | 3.3959 | | 160 | 0.5738 | 0.4571 | 9.5129 | 3.2325 | 9.6852 | 3.2569 | | 200 | 0.5772 | 0.4494 | 9.4178 | 3.1392 | 9.5668 | 3.1618 | | 240 | 0.5788 | 0.4449 | 9.3954 | 3.1192 | 9.5386 | 3.1418 | | 249 | 0.5783 | 0.4395 | 9.3843 | 3.1287 | 9.5329 | 3.1513 | ### Framework versions - Transformers 4.34.1 - Datasets 2.16.1 - Tokenizers 0.14.1