--- license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer datasets: - hate_speech_portuguese metrics: - accuracy model-index: - name: bertimbau_hate_speech results: - task: name: Text Classification type: text-classification dataset: name: hate_speech_portuguese type: hate_speech_portuguese config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.781433607520564 --- # bertimbau_hate_speech This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the hate_speech_portuguese dataset. It achieves the following results on the evaluation set: - Loss: 0.5009 - Accuracy: 0.7814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 302 | 0.4593 | 0.7756 | | 0.4361 | 2.0 | 604 | 0.5009 | 0.7814 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.1.0.dev20230816+cu121 - Datasets 2.14.4 - Tokenizers 0.13.3