--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 8ab19926-31fc-4df2-aaf8-66a2dd3749bd results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 27fad076064bde08_train_data.json ds_type: json format: custom path: /workspace/input_data/27fad076064bde08_train_data.json type: field_instruction: text_candidates field_output: text_with_holes format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/8ab19926-31fc-4df2-aaf8-66a2dd3749bd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/27fad076064bde08_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 796c4fa9-c7f7-467b-a2cf-3f469d3b69b7 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 796c4fa9-c7f7-467b-a2cf-3f469d3b69b7 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 8ab19926-31fc-4df2-aaf8-66a2dd3749bd This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0109 | 1 | 2.2949 | | 9.2363 | 0.0984 | 9 | 2.2291 | | 7.7598 | 0.1967 | 18 | 1.9733 | | 7.7173 | 0.2951 | 27 | 1.9135 | | 7.5313 | 0.3934 | 36 | 1.8741 | | 7.3236 | 0.4918 | 45 | 1.8487 | | 7.2973 | 0.5902 | 54 | 1.8352 | | 7.4121 | 0.6885 | 63 | 1.8279 | | 7.0907 | 0.7869 | 72 | 1.8232 | | 7.0951 | 0.8852 | 81 | 1.8207 | | 7.4799 | 0.9836 | 90 | 1.8196 | | 7.4071 | 1.0820 | 99 | 1.8197 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1