--- base_model: NghiemAbe/gpt-neo-vi-small-v5 tags: - generated_from_trainer model-index: - name: gpt-neo-vi-small-v6 results: [] --- # gpt-neo-vi-small-v6 This model is a fine-tuned version of [NlpHUST/gpt-neo-vi-small](https://huggingface.co/NlpHUST/gpt-neo-vi-small) on an [ViQuad](https://huggingface.co/datasets/NghiemAbe/viquad) dataset. It achieves the following results on the evaluation set: - Loss: 0.4156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3849 | 0.1 | 25 | 0.5802 | | 0.3747 | 0.19 | 50 | 0.5680 | | 0.3843 | 0.29 | 75 | 0.5695 | | 0.4016 | 0.39 | 100 | 0.5782 | | 0.4101 | 0.49 | 125 | 0.5563 | | 0.4011 | 0.58 | 150 | 0.5162 | | 0.3729 | 0.68 | 175 | 0.4888 | | 0.3512 | 0.78 | 200 | 0.4544 | | 0.316 | 0.88 | 225 | 0.4319 | | 0.3126 | 0.97 | 250 | 0.4156 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0