auto_scale_lr = dict(base_batch_size=16) backend_args = None data_root = '/kaggle/working/mmdetection/dataset/' dataset_type = 'CocoDataset' default_hooks = dict( checkpoint=dict(interval=1, type='CheckpointHook'), logger=dict(interval=50, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), sampler_seed=dict(type='DistSamplerSeedHook'), timer=dict(type='IterTimerHook'), visualization=dict(type='DetVisualizationHook')) default_scope = 'mmdet' env_cfg = dict( cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) launcher = 'none' load_from = '/kaggle/working/mmdetection/work_dirs/dino-4scale_resnet50_8xb2-12e_coco/epoch_6.pth' log_level = 'INFO' log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50) max_epochs = 12 metainfo = dict(classes=[ '000_aveda_shampoo', '001_binder_clips_median', '002_binder_clips_small', '003_bombik_bucket', '004_bonne_maman_blueberry', '005_bonne_maman_raspberry', '006_bonne_maman_strawberry', '007_costa_caramel', '008_essential_oil_bergamot', '009_garlic_toast_spread', '010_handcream_avocado', '011_hb_calcium', '012_hb_grapeseed', '013_hb_marine_collagen', '014_hellmanns_mayonnaise', '015_illy_blend', '016_japanese_finger_cookies', '017_john_west_canned_tuna', '018_kerastase_shampoo', '019_kiehls_facial_cream', '020_kiihne_balsamic', '021_kiihne_honey_mustard', '022_lindor_matcha', '023_lindor_salted_caramel', '024_lush_mask', '025_pasta_sauce_black_pepper', '026_pasta_sauce_tomato', '027_pepsi', '028_portable_yogurt_machine', '029_selfile_stick', '030_sour_lemon_drops', '031_sticky_notes', '032_stridex_green', '033_thermos_flask_cream', '034_thermos_flask_muji', '035_thermos_flask_sliver', '036_tragata_olive_oil', '037_tulip_luncheon_meat', '038_unicharm_cotton_pad', '039_vinda_tissue', '040_wrigley_doublemint_gum', '041_baseball_cap_black', '042_baseball_cap_pink', '043_bfe_facial_mask', '044_corgi_doll', '045_dinosaur_doll', '046_geo_mocha', '047_geo_roast_charcoal', '048_instant_noodle_black', '049_instant_noodle_red', '050_nabati_cheese_wafer', '051_truffettes', '052_acnes_cream', '053_aveda_conditioner', '054_banana_milk_drink', '055_candle_beast', '056_china_persimmon', '057_danisa_butter_cookies', '058_effaclar_duo', '059_evelom_cleanser', '060_glasses_box_blone', '061_handcream_iris', '062_handcream_lavender', '063_handcream_rosewater', '064_handcream_summer_hill', '065_hr_serum', '066_japanese_chocolate', '067_kerastase_hair_treatment', '068_kiehls_serum', '069_korean_beef_marinade', '070_korean_doenjang', '071_korean_gochujang', '072_korean_ssamjang', '073_loccitane_soap', '074_marvis_toothpaste_purple', '075_mouse_thinkpad', '076_oatly_chocolate', '077_oatly_original', '078_ousa_grated_cheese', '079_polaroid_film', '080_skinceuticals_be', '081_skinceuticals_cf', '082_skinceuticals_phyto', '083_stapler_black', '084_stapler_blue', '085_sunscreen_blue', '086_tempo_pocket_tissue', '087_thermos_flask_purple', '088_uha_matcha', '089_urban_decay_spray', '090_vitaboost_multivitamin', '091_watercolor_penbox', '092_youthlt_bilberry_complex', '093_daiso_mod_remover', '094_kaneyo_kitchen_bleach', '095_lays_chip_bag_blue', '096_lays_chip_bag_green', '097_lays_chip_tube_auburn', '098_lays_chip_tube_green', '099_mug_blue', ]) model = dict( as_two_stage=True, backbone=dict( depth=50, frozen_stages=1, init_cfg=dict(checkpoint='torchvision://resnet50', type='Pretrained'), norm_cfg=dict(requires_grad=False, type='BN'), norm_eval=True, num_stages=4, out_indices=( 0, 1, 2, 3, ), style='pytorch', type='ResNet', with_cp=True), bbox_head=dict( loss_bbox=dict(loss_weight=5.0, type='L1Loss'), loss_cls=dict( alpha=0.25, gamma=2.0, loss_weight=1.0, type='FocalLoss', use_sigmoid=True), loss_iou=dict(loss_weight=2.0, type='GIoULoss'), num_classes=100, sync_cls_avg_factor=True, type='DINOHead'), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_size_divisor=1, std=[ 58.395, 57.12, 57.375, ], type='DetDataPreprocessor'), decoder=dict( layer_cfg=dict( cross_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0), self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_heads=8)), num_layers=6, post_norm_cfg=None, return_intermediate=True), dn_cfg=dict( box_noise_scale=1.0, group_cfg=dict(dynamic=True, num_dn_queries=100, num_groups=None), label_noise_scale=0.5), encoder=dict( layer_cfg=dict( ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0), self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4)), num_layers=6), neck=dict( act_cfg=None, in_channels=[ 256, 512, 1024, 2048, ], kernel_size=1, norm_cfg=dict(num_groups=32, type='GN'), num_outs=4, out_channels=256, type='ChannelMapper'), num_feature_levels=4, num_queries=900, positional_encoding=dict( normalize=True, num_feats=128, offset=0.0, temperature=20), test_cfg=dict(max_per_img=300), train_cfg=dict( assigner=dict( match_costs=[ dict(type='FocalLossCost', weight=2.0), dict(box_format='xywh', type='BBoxL1Cost', weight=5.0), dict(iou_mode='giou', type='IoUCost', weight=2.0), ], type='HungarianAssigner')), type='DINO', with_box_refine=True) num_levels = 4 optim_wrapper = dict( clip_grad=dict(max_norm=0.1, norm_type=2), optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.0001), paramwise_cfg=dict(custom_keys=dict(backbone=dict(lr_mult=0.1))), type='OptimWrapper') param_scheduler = [ dict( begin=0, by_epoch=True, end=12, gamma=0.1, milestones=[ 11, ], type='MultiStepLR'), ] resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=1, dataset=dict( ann_file=None, backend_args=None, data_prefix=dict(img=''), data_root='/kaggle/input/insdet-test/InsDet-Test', pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 1333, 800, ), type='Resize'), dict(type='LoadAnnotations', with_bbox=True), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ], test_mode=True, type='CocoDataset'), drop_last=False, num_workers=2, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) test_evaluator = dict( ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json', backend_args=None, format_only=False, metric='bbox', type='CocoMetric') test_pipeline = [ dict(backend_args=None, type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 1333, 800, ), type='Resize'), dict(type='LoadAnnotations', with_bbox=True), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ] train_cfg = dict(max_epochs=6, type='EpochBasedTrainLoop', val_interval=1) train_dataloader = dict( batch_sampler=dict(type='AspectRatioBatchSampler'), batch_size=1, dataset=dict( ann_file='annotations/train.json', backend_args=None, data_prefix=dict(img='train/'), data_root='/kaggle/working/mmdetection/dataset/', filter_cfg=dict(filter_empty_gt=False, min_size=32), metainfo=dict(classes=[ '000_aveda_shampoo', '001_binder_clips_median', '002_binder_clips_small', '003_bombik_bucket', '004_bonne_maman_blueberry', '005_bonne_maman_raspberry', '006_bonne_maman_strawberry', '007_costa_caramel', '008_essential_oil_bergamot', '009_garlic_toast_spread', '010_handcream_avocado', '011_hb_calcium', '012_hb_grapeseed', '013_hb_marine_collagen', '014_hellmanns_mayonnaise', '015_illy_blend', '016_japanese_finger_cookies', '017_john_west_canned_tuna', '018_kerastase_shampoo', '019_kiehls_facial_cream', '020_kiihne_balsamic', '021_kiihne_honey_mustard', '022_lindor_matcha', '023_lindor_salted_caramel', '024_lush_mask', '025_pasta_sauce_black_pepper', '026_pasta_sauce_tomato', '027_pepsi', '028_portable_yogurt_machine', '029_selfile_stick', '030_sour_lemon_drops', '031_sticky_notes', '032_stridex_green', '033_thermos_flask_cream', '034_thermos_flask_muji', '035_thermos_flask_sliver', '036_tragata_olive_oil', '037_tulip_luncheon_meat', '038_unicharm_cotton_pad', '039_vinda_tissue', '040_wrigley_doublemint_gum', '041_baseball_cap_black', '042_baseball_cap_pink', '043_bfe_facial_mask', '044_corgi_doll', '045_dinosaur_doll', '046_geo_mocha', '047_geo_roast_charcoal', '048_instant_noodle_black', '049_instant_noodle_red', '050_nabati_cheese_wafer', '051_truffettes', '052_acnes_cream', '053_aveda_conditioner', '054_banana_milk_drink', '055_candle_beast', '056_china_persimmon', '057_danisa_butter_cookies', '058_effaclar_duo', '059_evelom_cleanser', '060_glasses_box_blone', '061_handcream_iris', '062_handcream_lavender', '063_handcream_rosewater', '064_handcream_summer_hill', '065_hr_serum', '066_japanese_chocolate', '067_kerastase_hair_treatment', '068_kiehls_serum', '069_korean_beef_marinade', '070_korean_doenjang', '071_korean_gochujang', '072_korean_ssamjang', '073_loccitane_soap', '074_marvis_toothpaste_purple', '075_mouse_thinkpad', '076_oatly_chocolate', '077_oatly_original', '078_ousa_grated_cheese', '079_polaroid_film', '080_skinceuticals_be', '081_skinceuticals_cf', '082_skinceuticals_phyto', '083_stapler_black', '084_stapler_blue', '085_sunscreen_blue', '086_tempo_pocket_tissue', '087_thermos_flask_purple', '088_uha_matcha', '089_urban_decay_spray', '090_vitaboost_multivitamin', '091_watercolor_penbox', '092_youthlt_bilberry_complex', '093_daiso_mod_remover', '094_kaneyo_kitchen_bleach', '095_lays_chip_bag_blue', '096_lays_chip_bag_green', '097_lays_chip_tube_auburn', '098_lays_chip_tube_green', '099_mug_blue', ]), pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(prob=0.5, type='RandomFlip'), dict( transforms=[ [ dict( keep_ratio=True, scales=[ ( 480, 1333, ), ( 512, 1333, ), ( 544, 1333, ), ( 576, 1333, ), ( 608, 1333, ), ( 640, 1333, ), ( 672, 1333, ), ( 704, 1333, ), ( 736, 1333, ), ( 768, 1333, ), ( 800, 1333, ), ], type='RandomChoiceResize'), ], [ dict( keep_ratio=True, scales=[ ( 400, 4200, ), ( 500, 4200, ), ( 600, 4200, ), ], type='RandomChoiceResize'), dict( allow_negative_crop=True, crop_size=( 384, 600, ), crop_type='absolute_range', type='RandomCrop'), dict( keep_ratio=True, scales=[ ( 480, 1333, ), ( 512, 1333, ), ( 544, 1333, ), ( 576, 1333, ), ( 608, 1333, ), ( 640, 1333, ), ( 672, 1333, ), ( 704, 1333, ), ( 736, 1333, ), ( 768, 1333, ), ( 800, 1333, ), ], type='RandomChoiceResize'), ], ], type='RandomChoice'), dict(type='PackDetInputs'), ], type='CocoDataset'), num_workers=1, persistent_workers=True, sampler=dict(shuffle=True, type='DefaultSampler')) train_pipeline = [ dict(backend_args=None, type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(prob=0.5, type='RandomFlip'), dict( transforms=[ [ dict( keep_ratio=True, scales=[ ( 480, 1333, ), ( 512, 1333, ), ( 544, 1333, ), ( 576, 1333, ), ( 608, 1333, ), ( 640, 1333, ), ( 672, 1333, ), ( 704, 1333, ), ( 736, 1333, ), ( 768, 1333, ), ( 800, 1333, ), ], type='RandomChoiceResize'), ], [ dict( keep_ratio=True, scales=[ ( 400, 4200, ), ( 500, 4200, ), ( 600, 4200, ), ], type='RandomChoiceResize'), dict( allow_negative_crop=True, crop_size=( 384, 600, ), crop_type='absolute_range', type='RandomCrop'), dict( keep_ratio=True, scales=[ ( 480, 1333, ), ( 512, 1333, ), ( 544, 1333, ), ( 576, 1333, ), ( 608, 1333, ), ( 640, 1333, ), ( 672, 1333, ), ( 704, 1333, ), ( 736, 1333, ), ( 768, 1333, ), ( 800, 1333, ), ], type='RandomChoiceResize'), ], ], type='RandomChoice'), dict(type='PackDetInputs'), ] val_cfg = dict(type='ValLoop') val_dataloader = dict( batch_size=1, dataset=dict( ann_file='annotations/instances_val2017.json', backend_args=None, data_prefix=dict(img='val2017/'), data_root='data/coco/', pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 1333, 800, ), type='Resize'), dict(type='LoadAnnotations', with_bbox=True), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ], test_mode=True, type='CocoDataset'), drop_last=False, num_workers=2, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) val_evaluator = dict( ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json', backend_args=None, format_only=False, metric='bbox', type='CocoMetric') vis_backends = [ dict(type='LocalVisBackend'), ] visualizer = dict( name='visualizer', type='DetLocalVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ]) work_dir = './work_dirs/dino-4scale_resnet50_8xb2-12e_coco'