--- widget: - text: "Hold da op! Kan det virkelig passe?" language: - "da" tags: - sentiment - emotion - emotion-detection - ekman --- ## BERT-model for danish multi-class classification of emotions Classifies a danish sentence into one of 6 different emotions: | Danish emotion | Ekman's emotion | | ----- | ----- | | 😞 **Foragt** | Disgust | | 😨 **Frygt** | Fear | | πŸ˜„ **GlΓ¦de** | Joy | | 😱 **Overraskelse** | Surprise | | 😒 **Tristhed** | Sadness | | 😠 **Vrede** | Anger | # How to use ```ruby from transformers import pipeline model_path = "NikolajMunch/danish-emotion-classification" classifier = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) prediction = classifier("Jeg er godt nok ked af at mine SMS'er er slettet") print(prediction) # [{'label': 'Tristhed', 'score': 0.9725030660629272}] ``` or ```ruby from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("NikolajMunch/danish-emotion-classification") model = AutoModelForSequenceClassification.from_pretrained("NikolajMunch/danish-emotion-classification") ``` # Model performance **Accuracy** : 81.48 **F1 Score** : 81.48 *(tested on 3949 labelled sentences)* # Training data - TBA (this page will be updated soon, with more information on the model and training data)