--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.4828 - Der: 0.1446 - False Alarm: 0.0404 - Missed Detection: 0.0606 - Confusion: 0.0435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5955 | 1.0 | 394 | 0.5366 | 0.1609 | 0.0435 | 0.0706 | 0.0468 | | 0.5648 | 2.0 | 788 | 0.4979 | 0.1509 | 0.0400 | 0.0646 | 0.0462 | | 0.5392 | 3.0 | 1182 | 0.4852 | 0.1489 | 0.0447 | 0.0588 | 0.0453 | | 0.5283 | 4.0 | 1576 | 0.4756 | 0.1442 | 0.0412 | 0.0607 | 0.0422 | | 0.5109 | 5.0 | 1970 | 0.4828 | 0.1446 | 0.0404 | 0.0606 | 0.0435 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu118 - Datasets 2.18.0 - Tokenizers 0.19.1