--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.7512 - Der: 0.2263 - False Alarm: 0.0467 - Missed Detection: 0.1359 - Confusion: 0.0437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5796 | 1.0 | 328 | 0.7613 | 0.2340 | 0.0514 | 0.1341 | 0.0484 | | 0.5518 | 2.0 | 656 | 0.7646 | 0.2328 | 0.0480 | 0.1391 | 0.0458 | | 0.5304 | 3.0 | 984 | 0.7723 | 0.2321 | 0.0426 | 0.1421 | 0.0474 | | 0.5043 | 4.0 | 1312 | 0.7504 | 0.2272 | 0.0490 | 0.1336 | 0.0446 | | 0.5086 | 5.0 | 1640 | 0.7512 | 0.2263 | 0.0467 | 0.1359 | 0.0437 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu118 - Datasets 2.18.0 - Tokenizers 0.19.1