--- license: mit library_name: peft tags: - axolotl - generated_from_trainer base_model: 152334H/miqu-1-70b-sf model-index: - name: miqu-limarp-70b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: 152334H/miqu-1-70b-sf model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: NobodyExistsOnTheInternet/LimaRP type: sharegpt conversation: chatml - path: Doctor-Shotgun/no-robots-sharegpt type: sharegpt conversation: chatml chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./miqu-lora save_safetensors: true adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: miqu-lora wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: paged_lion_8bit lr_scheduler: cosine learning_rate: 0.00025 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true local_rank: logging_steps: 1 xformers_attention: flash_attention: true save_total_limit: 2 warmup_steps: 10 eval_table_size: weight_decay: 0 special_tokens: bos_token: "" eos_token: "<|im_end|>" unk_token: "" tokens: - "<|im_start|>" - "<|im_end|>" neftune_noise_alpha: 5 hub_model_id: NobodyExistsOnTheInternet/miqu-limarp-70b hub_strategy: all_checkpoints hf_use_auth_token: true ```

# miqu-limarp-70b This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0