---
license: mit
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: 152334H/miqu-1-70b-sf
model-index:
- name: miqu-limarp-70b
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.3.0`
```yaml
base_model: 152334H/miqu-1-70b-sf
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: NobodyExistsOnTheInternet/LimaRP
type: sharegpt
conversation: chatml
- path: Doctor-Shotgun/no-robots-sharegpt
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./miqu-lora
save_safetensors: true
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: miqu-lora
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_lion_8bit
lr_scheduler: cosine
learning_rate: 0.00025
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_total_limit: 2
warmup_steps: 10
eval_table_size:
weight_decay: 0
special_tokens:
bos_token: ""
eos_token: "<|im_end|>"
unk_token: ""
tokens:
- "<|im_start|>"
- "<|im_end|>"
neftune_noise_alpha: 5
hub_model_id: NobodyExistsOnTheInternet/miqu-limarp-70b
hub_strategy: all_checkpoints
hf_use_auth_token: true
```
# miqu-limarp-70b
This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0