--- license: apache-2.0 --- # Mistral-7B-code-16k-qlora I'm excited to announce the release of a new model called Mistral-7B-code-16k-qlora. This small and fast model shows a lot of promise for supporting coding or acting as a copilot. I'm currently looking for people to help me test it out! ## Additional Information This model was trained on 3x RTX 3090 in my homelab, using around 65kWh for approximately 23 cents, which is equivalent to around $15 for electricity. ## Quantised: 1. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-GPTQ 2. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-AWQ 3. https://huggingface.co/TheBloke/Mistral-7B-Code-16K-qlora-GGUF ## Download by qBittorrent: #### Torrent file: https://github.com/Nondzu/LlamaTor/blob/torrents/torrents/Nondzu_Mistral-7B-code-16k-qlora.torrent ## Dataset: nickrosh/Evol-Instruct-Code-80k-v1 https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1 ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## eval plus Human eval plus: https://github.com/evalplus/evalplus ``` Nondzu mistral-7b-code Base {'pass@1': 0.3353658536585366} Base + Extra {'pass@1': 0.2804878048780488} ``` to compare here is original Mistral model tested on the same machine ``` Mistral 7b Base {'pass@1': 0.2926829268292683} Base + Extra {'pass@1': 0.24390243902439024} ``` ## Settings: ``` base_model: mistralai/Mistral-7B-Instruct-v0.1 base_model_config: mistralai/Mistral-7B-Instruct-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: nickrosh/Evol-Instruct-Code-80k-v1 type: oasst dataset_prepared_path: val_set_size: 0.01 output_dir: ./Mistral-7B-Evol-Instruct-16k-test11 adapter: qlora lora_model_dir: # 16384 8192 4096 2048 sequence_len: 16384 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: mistral-code wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 8 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 20 save_steps: debug: # deepspeed: deepspeed: deepspeed/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63729f35acef705233c87909/NyuqJFDkH00KGvuOwHIuG.png) Check my other projects: https://github.com/Nondzu/LlamaTor