--- base_model: google/bert_uncased_L-12_H-768_A-12 datasets: - QuotaClimat/frugalaichallenge-text-train language: - en license: apache-2.0 model_name: frugal-ai-text-bert-base pipeline_tag: text-classification tags: - model_hub_mixin - pytorch_model_hub_mixin - climate --- # Model Card for Model ID Classify text into 8 categories of climate misinformation using google/bert_uncased_L-12_H-768_A-12. ## Model Details ### Model Description Fine trained BERT for classifying climate information as part of the Frugal AI Challenge, for submission to https://huggingface.co/frugal-ai-challenge and scoring on accuracy and efficiency. Trainied on only the non-evaluation 80% of the data, so it's (non-cheating) score will be lower. - **Developed by:** Andre Bach - **Funded by [optional]:** N/A - **Shared by [optional]:** Andre Bach - **Model type:** Text classification - **Language(s) (NLP):** ['en'] - **License:** apache-2.0 - **Finetuned from model [optional]:** google/bert_uncased_L-12_H-768_A-12 ### Model Sources [optional] - **Repository:** frugal-ai-text-bert-base - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** {'max_dataset_size': 'full', 'bert_variety': 'google/bert_uncased_L-12_H-768_A-12', 'max_length': 256, 'num_epochs': 3, 'batch_size': 16} #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics {'train_loss': 0.1672610024448301, 'train_acc': 0.9589490968801314, 'test_loss': 0.967790144604522, 'test_acc': 0.6907301066447908} ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]