--- license: cc-by-sa-4.0 language: - 'no' pipeline_tag: text-classification --- The Entailment Model is a pre-trained classifier to generate Entailment score for fact verification purpose. Specifically, we fine-tune NorBERT on a collection of machine translated [VitaminC](https://huggingface.co/datasets/tals/vitaminc) dataset which is designed to determine whether the evidence supports assumption and is suitable for training a model on whether the given context entails the generated texts. Then, we employ the fine-tuned model as our Entailment model. Prompt format: ``` {article}[SEP]{positive_sample} ``` Inference format: ``` {article}[SEP]{generated_text} ``` ## Run the Model ```python import torch from transformers import AutoTokenizer, BertForSequenceClassification model_id = "NorGLM/Entailment" tokenizer = AutoTokenizer.from_pretrained(model_id, fast_tokenizer=True) tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = BertForSequenceClassification.from_pretrained( model_id ) ``` ## Inference Example ```python from torch.utils.data import TensorDataset, DataLoader def entailment_score(texts, references, generated_texts): # Entailment: 1, Contradict: 0, Neutral: 2 # concatinate news articles and generated summaries as input input_texts = [t + ' [SEP] '+ g for t,g in zip(texts, generated_texts)] # Set the maximum sequence length according to NorBERT config. MAX_LEN = 512 batch_size = 16 test_inputs = tokenizer(text=input_texts, add_special_tokens=True, return_attention_mask = True, return_tensors="pt", padding=True, truncation=True, max_length=MAX_LEN) validation_data = TensorDataset(test_inputs['input_ids'],test_inputs['attention_mask']) validation_dataloader = DataLoader(validation_data,batch_size=batch_size) model.eval() results = [] num_batches = 1 for batch in validation_dataloader: # Add batch to GPU batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader b_input_ids, b_input_mask = batch # Telling the model not to compute or store gradients, saving memory and speeding up validation with torch.no_grad(): # Forward pass, calculate logit predictions logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) # Move logits and labels to CPU logits = logits[0].to('cpu').numpy() pred_flat = np.argmax(logits, axis=1).flatten() results.extend(pred_flat) num_batches += 1 ent_ratio = results.count(1) / float(len(results)) neu_ratio = results.count(2) / float(len(results)) con_ratio = results.count(0) / float(len(results)) print("Entailment ratio: {}; Neutral ratio: {}; Contradict ratio: {}.".format(ent_ratio, neu_ratio, con_ratio)) return ent_ratio, neu_ratio, con_ratio # load evaluation text eva_file_name = eval_df = pd.read_csv(eva_file_name) remove_str = 'Token indices sequence length is longer than 2048.' eval_df = eval_df[eval_df!=remove_str] eval_df = eval_df.dropna() references = eval_df['positive_sample'].to_list() hypo_list = eval_df['generated_text'].to_list() articles = eval_df['article'].to_list() ent_ratio, neu_ratio, con_ratio = entailment_score(articles, references, hypo_list) ``` ## Citation Information If you feel our work is helpful, please cite our paper: ``` @article{liu2023nlebench+, title={NLEBench+ NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian}, author={Liu, Peng and Zhang, Lemei and Farup, Terje Nissen and Lauvrak, Even W and Ingvaldsen, Jon Espen and Eide, Simen and Gulla, Jon Atle and Yang, Zhirong}, journal={arXiv preprint arXiv:2312.01314}, year={2023} } ```