--- license: llama2 inference: parameters: do_sample: false max_length: 200 widget: - text: "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n)\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many stadiums in total?\n\nSELECT" example_title: "Number stadiums" - text: "CREATE TABLE work_orders ( ID NUMBER, CREATED_AT TEXT, COST FLOAT, INVOICE_AMOUNT FLOAT, IS_DUE BOOLEAN, IS_OPEN BOOLEAN, IS_OVERDUE BOOLEAN, COUNTRY_NAME TEXT, )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many work orders are open?\n\nSELECT" example_title: "Open work orders" - text: "CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number )\n\nCREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others )\n\nCREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text )\n\nCREATE TABLE singer_in_concert ( concert_id number, singer_id text )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the maximum, the average, and the minimum capacity of stadiums ?\n\nSELECT" example_title: "Stadium capacity" --- # NSQL-Llama-2-7B ## Model Description NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks. In this repository we are introducing a new member of NSQL, NSQL-Llama-2-7B. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of text-to-SQL pairs. ## Training Data The general SQL queries are the SQL subset from [The Stack](https://huggingface.co/datasets/bigcode/the-stack), containing 1M training samples. The labeled text-to-SQL pairs come from more than 20 public sources across the web from standard datasets. We hold out Spider and GeoQuery datasets for use in evaluation. ## Evaluation Data We evaluate our models on two text-to-SQL benchmarks: Spider and GeoQuery. ## Training Procedure NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We pre-trained for 3 epochs and fine-tuned for 10 epochs. ## Intended Use and Limitations The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputting `SELECT` queries. ## How to Use Example 1: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-llama-2-7B") model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-llama-2-7B", torch_dtype=torch.bfloat16) text = """CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number ) CREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others ) CREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text ) CREATE TABLE singer_in_concert ( concert_id number, singer_id text ) -- Using valid SQLite, answer the following questions for the tables provided above. -- What is the maximum, the average, and the minimum capacity of stadiums ? SELECT""" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` Example 2: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-llama-2-7B") model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-llama-2-7B", torch_dtype=torch.bfloat16) text = """CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, ) -- Using valid SQLite, answer the following questions for the tables provided above. -- how many stadiums in total? SELECT""" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` Example 3: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-llama-2-7B") model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-llama-2-7B", torch_dtype=torch.bfloat16) text = """CREATE TABLE work_orders ( ID NUMBER, CREATED_AT TEXT, COST FLOAT, INVOICE_AMOUNT FLOAT, IS_DUE BOOLEAN, IS_OPEN BOOLEAN, IS_OVERDUE BOOLEAN, COUNTRY_NAME TEXT, ) -- Using valid SQLite, answer the following questions for the tables provided above. -- how many work orders are open? SELECT""" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/NSQL).