--- datasets: - cerebras/SlimPajama-627B - HuggingFaceH4/ultrachat_200k - bigcode/starcoderdata language: - en metrics: - accuracy - speed library_name: transformers tags: - HelpingAI - coder - lite - Fine-tuned - Text-Generation - Transformers license: mit widget: - text: "<|system|>\nYou are a chatbot who can code!\n<|user|>\nWrite me a function to search for OEvortex on youtube use Webbrowser .\n<|assistant|>\n" --- # HelpingAI-Lite # Subscribe to my YouTube channel [Subscribe](https://youtube.com/@OEvortex) HelpingAI-Lite is a lite version of the HelpingAI model that can assist with coding tasks. It's trained on a diverse range of datasets and fine-tuned to provide accurate and helpful responses. ## License This model is licensed under MIT. ## Datasets The model was trained on the following datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized ## Language The model supports English language. ## Usage # CPU and GPU code ```python from transformers import pipeline from accelerate import Accelerator # Initialize the accelerator accelerator = Accelerator() # Initialize the pipeline pipe = pipeline("text-generation", model="OEvortex/HelpingAI-Lite", device=accelerator.device) # Define the messages messages = [ { "role": "system", "content": "You are a chatbot who can help code!", }, { "role": "user", "content": "Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.", }, ] # Prepare the prompt prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Generate predictions outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) # Print the generated text print(outputs[0]["generated_text"]) ```