--- library_name: sklearn tags: - sklearn - regression - embeddings - weight-prediction - elastic model-index: - name: Elastic Net results: - task: type: regression name: Embedding Weight Prediction metrics: - type: mse value: 0.7620290676891099 name: Test MSE - type: r2 value: -0.044365932705230184 name: Test R² --- # Elastic Net Weight Predictor Linear model combining L1 and L2 regularization ## Performance Metrics - Training Time: 1.55 seconds - Training MSE: 0.739313 - Testing MSE: 0.762029 - Training R²: 0.003906 - Testing R²: -0.044366 ## Model Analysis ### Predictions vs True Values ![Predictions](./plots/predictions.png) This plot shows how well the model's predictions match the true values: - Points on the red line indicate perfect predictions - Spread around the line shows prediction uncertainty - Systematic deviations indicate bias ### Error Distribution ![Error Distribution](./plots/error_distribution.png) This plot shows the distribution of prediction errors: - Centered around zero indicates unbiased predictions - Width shows prediction precision - Shape reveals error patterns ### Dimension-wise Performance ![Dimension MSE](./plots/dimension_mse.png) This plot shows the MSE for each embedding dimension: - Lower bars indicate better predictions - Variations show which dimensions are harder to predict - Can guide targeted improvements ## Usage ```python import skops.io as sio # Load the model model = sio.load('weight_predictor_elastic.skops') # Make predictions weights = model.predict(question_embedding) ```