--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-pets results: [] --- # vit-base-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.3168 - Accuracy: 0.9432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5136 | 1.0 | 47 | 1.1031 | 0.8430 | | 0.5547 | 2.0 | 94 | 0.5232 | 0.9269 | | 0.4111 | 3.0 | 141 | 0.3988 | 0.9310 | | 0.3438 | 4.0 | 188 | 0.3553 | 0.9337 | | 0.298 | 5.0 | 235 | 0.3448 | 0.9296 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.2