--- datasets: - PKU-Alignment/PKU-SafeRLHF language: - en tags: - reinforcement-learning-from-human-feedback - reinforcement-learning - beaver - safety - llama - ai-safety - deepspeed - rlhf - alpaca library_name: safe-rlhf --- # 🦫 Beaver's Reward Model ## Model Details The Beaver reward model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. It can play a role in the safe RLHF algorithm, helping the Beaver model become more helpful. - **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. - **Model Type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license. - **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). ## Model Sources - **Repository:** - **Beaver:** - **Dataset:** - **Reward Model:** - **Cost Model:** - **Dataset Paper:** - **Paper:** ## How to Use the Reward Model ```python import torch from transformers import AutoTokenizer from safe_rlhf.models import AutoModelForScore model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', torch_dtype=torch.bfloat16, device_map='auto') tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward') input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' input_ids = tokenizer(input, return_tensors='pt') output = model(**input_ids) print(output) # ScoreModelOutput( # scores=tensor([[[-19.7500], # [-19.3750], # [-20.1250], # [-18.0000], # [-20.0000], # [-23.8750], # [-23.5000], # [-22.0000], # [-21.0000], # [-20.1250], # [-23.7500], # [-21.6250], # [-21.7500], # [-12.9375], # [ -6.4375], # [ -8.1250], # [ -7.3438], # [ -9.1875], # [-13.6250], # [-10.5625], # [ -9.9375], # [ -6.4375], # [ -6.0938], # [ -5.8438], # [ -6.6562], # [ -5.9688], # [ -9.1875], # [-11.4375]]], grad_fn=), # end_scores=tensor([[-11.4375]], grad_fn=), # last_hidden_state=tensor([[[ 0.7461, -0.6055, -0.4980, ..., 0.1670, 0.7812, -0.3242], # [ 0.7383, -0.5391, -0.1836, ..., -0.1396, 0.5273, -0.2256], # [ 0.6836, -0.7031, -0.3730, ..., 0.2100, 0.5000, -0.6328], # ..., # [-1.7969, 1.0234, 1.0234, ..., -0.8047, 0.2500, -0.8398], # [ 2.0469, -1.3203, 0.8984, ..., -0.7734, -1.4141, -1.6797], # [ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]]], # dtype=torch.bfloat16, grad_fn=), # end_last_hidden_state=tensor([[ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]], # dtype=torch.bfloat16, grad_fn=), # end_index=tensor([27]) # ) ```