--- datasets: - PKU-Alignment/PKU-SafeRLHF language: - en tags: - reinforcement-learning-from-human-feedback - reinforcement-learning - beaver - safety - llama - ai-safety - deepspeed - rlhf - alpaca library_name: safe-rlhf --- # 🦫 Beaver's Reward Model ## Model Details The Beaver reward model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. It can play a role in the safe RLHF algorithm, helping the Beaver model become more helpful. - **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. - **Model Type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license. - **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). ## Model Sources - **Repository:** - **Beaver:** - **Dataset:** - **Reward Model:** - **Cost Model:** - **Dataset Paper:** - **Paper:** ## How to Use the Reward Model ```python import torch from transformers import AutoTokenizer from safe_rlhf.models import AutoModelForScore model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v3.0-reward', torch_dtype=torch.bfloat16, device_map='auto') tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v3.0-reward') input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' input_ids = tokenizer(input, return_tensors='pt') output = model(**input_ids) print(output) # ScoreModelOutput( # scores=tensor([[[-14.0000], # [ -2.6094], # [ -2.6562], # [ -2.0312], # [ -1.2188], # [ -1.6250], # [ -2.4688], # [ -2.7500], # [ -3.0000], # [ -6.0000], # [ -5.0625], # [ -7.0938], # [ -6.9688], # [ -4.3125], # [ -4.2188], # [ -3.7969], # [ -3.6875], # [ -3.3750], # [ -2.8906], # [ -3.9219], # [ -2.1406], # [ -1.7578], # [ 0.4629], # [ 2.1719], # [ 4.4062], # [ 7.1562], # [ 7.7188], # [ 10.7500]]], grad_fn=), # end_scores=tensor([[10.7500]], grad_fn=), # last_hidden_state=tensor([[[ 0.4805, -0.4863, -0.9258, ..., -0.0718, 0.8555, 0.6641], # [ 0.2021, 2.0156, 3.5156, ..., -0.9844, -1.1484, 1.3203], # [ 1.0938, 1.4609, 1.7891, ..., -3.2031, -0.8555, -1.2969], # ..., # [ 1.5859, 0.1348, 0.0322, ..., -1.3672, -1.5234, 1.5156], # [ 0.9102, 0.6367, -0.8555, ..., -1.2109, -0.6953, 1.5312], # [ 1.7188, 0.4434, -0.5586, ..., -1.1484, -0.7461, 2.2031]]], # dtype=torch.bfloat16, grad_fn=), # end_last_hidden_state=tensor([[ 1.7188, 0.4434, -0.5586, ..., -1.1484, -0.7461, 2.2031]], # dtype=torch.bfloat16, grad_fn=), # end_index=tensor([27]) # ) ```