--- base_model: finiteautomata/beto-sentiment-analysis tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: beto-sentiment-analysis-finetuned-detests24 results: [] --- # beto-sentiment-analysis-finetuned-detests24 This model is a fine-tuned version of [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0647 - Accuracy: 0.8609 - F1-score: 0.7906 - Precision: 0.8107 - Recall: 0.7755 - Auc: 0.7755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:| | 0.4035 | 1.0 | 153 | 0.3459 | 0.8527 | 0.7540 | 0.8257 | 0.7219 | 0.7219 | | 0.2217 | 2.0 | 306 | 0.4773 | 0.8183 | 0.7700 | 0.7519 | 0.8088 | 0.8088 | | 0.0787 | 3.0 | 459 | 0.6757 | 0.8576 | 0.7959 | 0.7982 | 0.7936 | 0.7936 | | 0.016 | 4.0 | 612 | 0.7801 | 0.8478 | 0.7851 | 0.7830 | 0.7873 | 0.7873 | | 0.0251 | 5.0 | 765 | 0.9783 | 0.8511 | 0.7994 | 0.7862 | 0.8173 | 0.8173 | | 0.0159 | 6.0 | 918 | 0.9841 | 0.8576 | 0.7926 | 0.8001 | 0.7860 | 0.7860 | | 0.0002 | 7.0 | 1071 | 0.9943 | 0.8609 | 0.7906 | 0.8107 | 0.7755 | 0.7755 | | 0.0001 | 8.0 | 1224 | 1.0252 | 0.8625 | 0.7925 | 0.8139 | 0.7765 | 0.7765 | | 0.0013 | 9.0 | 1377 | 1.0663 | 0.8511 | 0.7808 | 0.7916 | 0.7716 | 0.7716 | | 0.0001 | 10.0 | 1530 | 1.0647 | 0.8609 | 0.7906 | 0.8107 | 0.7755 | 0.7755 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1