--- license: apache-2.0 base_model: google/electra-base-discriminator tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: electra-base-discriminator-finetuned-detests-wandb24 results: [] --- # electra-base-discriminator-finetuned-detests-wandb24 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4457 - Accuracy: 0.7741 - F1-score: 0.6965 - Precision: 0.6879 - Recall: 0.7092 - Auc: 0.7092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:| | 0.4719 | 1.0 | 77 | 0.4698 | 0.7971 | 0.6380 | 0.7159 | 0.6199 | 0.6199 | | 0.4737 | 2.0 | 154 | 0.4457 | 0.7741 | 0.6965 | 0.6879 | 0.7092 | 0.7092 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1