--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer datasets: - Paladiso/dataset_695de20c-0af8-4b07-94bc-5ccdfcc25776 model-index: - name: a1ea3ebd-561e-45da-86b1-ff6386e13625 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: /workspace/axolotl/data/prepared datasets: - ds_type: json format: custom path: Paladiso/dataset_695de20c-0af8-4b07-94bc-5ccdfcc25776 type: field_input: parent_id field_instruction: role field_output: text system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Paladiso/a1ea3ebd-561e-45da-86b1-ff6386e13625 hub_private_repo: true hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: /workspace/axolotl/outputs pad_to_sequence_len: true push_to_hub: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_safetensors: true saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true use_accelerate: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 695de20c-0af8-4b07-94bc-5ccdfcc25776 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 695de20c-0af8-4b07-94bc-5ccdfcc25776 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# a1ea3ebd-561e-45da-86b1-ff6386e13625 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the Paladiso/dataset_695de20c-0af8-4b07-94bc-5ccdfcc25776 dataset. It achieves the following results on the evaluation set: - Loss: 2.0698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4536 | 0.0011 | 3 | 2.3868 | | 2.1539 | 0.0021 | 6 | 2.3161 | | 1.9608 | 0.0032 | 9 | 2.0698 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.0a0+e000cf0ad9.nv24.10 - Datasets 3.1.0 - Tokenizers 0.21.0