--- library_name: transformers language: - yue license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 - mozilla-foundation/common_voice_16_1 - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Small Canontese X v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_17_0 config: yue split: None args: 'config: zh-HK, split: test' metrics: - name: Wer type: wer value: 55.631920580374185 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 metrics: - name: Wer type: wer value: 55.631920580374185 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_16_0 metrics: - name: Wer type: wer value: 55.631920580374185 --- # Whisper Small Canontese X v3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0, the Common Voice 16.1 and the Common Voice 17.0 datasets. It achieves the following results on the evaluation set: - Loss: 0.2650 - Wer: 55.6319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0845 | 0.7087 | 1000 | 0.2773 | 61.5120 | | 0.0285 | 1.4174 | 2000 | 0.2697 | 56.7010 | | 0.0102 | 2.1262 | 3000 | 0.2650 | 55.6319 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1