--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fr metrics: - name: Test WER type: wer value: 24.56 - name: Test CER type: cer value: 7.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 63.62 - name: Test CER type: cer value: 17.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 66.45 --- --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FR dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.495 | 0.16 | 500 | 3.3883 | 1.0 | | 2.9095 | 0.32 | 1000 | 2.9152 | 1.0000 | | 1.8434 | 0.49 | 1500 | 1.0473 | 0.7446 | | 1.4298 | 0.65 | 2000 | 0.5729 | 0.5130 | | 1.1937 | 0.81 | 2500 | 0.3795 | 0.3450 | | 1.1248 | 0.97 | 3000 | 0.3321 | 0.3052 | | 1.0835 | 1.13 | 3500 | 0.3038 | 0.2805 | | 1.0479 | 1.3 | 4000 | 0.2910 | 0.2689 | | 1.0413 | 1.46 | 4500 | 0.2798 | 0.2593 | | 1.014 | 1.62 | 5000 | 0.2727 | 0.2512 | | 1.004 | 1.78 | 5500 | 0.2646 | 0.2471 | | 0.9949 | 1.94 | 6000 | 0.2619 | 0.2457 | It achieves the best result on STEP 6000 on the validation set: - Loss: 0.2619 - Wer: 0.2457 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7` with split `test` ```bash python eval.py --model_id Plim/xls-r-300m-fr --dataset mozilla-foundation/common_voice_7_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Plim/xls-r-300m-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```