diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/MANIFEST.in b/MANIFEST.in
new file mode 100644
index 0000000000000000000000000000000000000000..e534d45947bceb88f64ee858119cbc16d7c61258
--- /dev/null
+++ b/MANIFEST.in
@@ -0,0 +1 @@
+include requirements/*.txt
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..35352407d8b61ccd6dbff4a42134100e87ed87e5
--- /dev/null
+++ b/README.md
@@ -0,0 +1,532 @@
+
+
+
+
+[![docs](https://img.shields.io/badge/docs-latest-blue)](https://lagent.readthedocs.io/en/latest/)
+[![PyPI](https://img.shields.io/pypi/v/lagent)](https://pypi.org/project/lagent)
+[![license](https://img.shields.io/github/license/InternLM/lagent.svg)](https://github.com/InternLM/lagent/tree/main/LICENSE)
+[![issue resolution](https://img.shields.io/github/issues-closed-raw/InternLM/lagent)](https://github.com/InternLM/lagent/issues)
+[![open issues](https://img.shields.io/github/issues-raw/InternLM/lagent)](https://github.com/InternLM/lagent/issues)
+![Visitors](https://api.visitorbadge.io/api/visitors?path=InternLM%2Flagent%20&countColor=%23263759&style=flat)
+![GitHub forks](https://img.shields.io/github/forks/InternLM/lagent)
+![GitHub Repo stars](https://img.shields.io/github/stars/InternLM/lagent)
+![GitHub contributors](https://img.shields.io/github/contributors/InternLM/lagent)
+
+
+
+
+ 👋 join us on 𝕏 (Twitter), Discord and WeChat
+
+
+## Installation
+
+Install from source:
+
+```bash
+git clone https://github.com/InternLM/lagent.git
+cd lagent
+pip install -e .
+```
+
+## Usage
+
+Lagent is inspired by the design philosophy of PyTorch. We expect that the analogy of neural network layers will make the workflow clearer and more intuitive, so users only need to focus on creating layers and defining message passing between them in a Pythonic way. This is a simple tutorial to get you quickly started with building multi-agent applications.
+
+### Models as Agents
+
+Agents use `AgentMessage` for communication.
+
+```python
+from typing import Dict, List
+from lagent.agents import Agent
+from lagent.schema import AgentMessage
+from lagent.llms import VllmModel, INTERNLM2_META
+
+llm = VllmModel(
+ path='Qwen/Qwen2-7B-Instruct',
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>'],
+ max_new_tokens=1024,
+)
+system_prompt = '你的回答只能从“典”、“孝”、“急”三个字中选一个。'
+agent = Agent(llm, system_prompt)
+
+user_msg = AgentMessage(sender='user', content='今天天气情况')
+bot_msg = agent(user_msg)
+print(bot_msg)
+```
+
+```
+content='急' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+### Memory as State
+
+Both input and output messages will be added to the memory of `Agent` in each forward pass. This is performed in `__call__` rather than `forward`. See the following pseudo code
+
+```python
+ def __call__(self, *message):
+ message = pre_hooks(message)
+ add_memory(message)
+ message = self.forward(*message)
+ add_memory(message)
+ message = post_hooks(message)
+ return message
+```
+
+Inspect the memory in two ways
+
+```python
+memory: List[AgentMessage] = agent.memory.get_memory()
+print(memory)
+print('-' * 120)
+dumped_memory: Dict[str, List[dict]] = agent.state_dict()
+print(dumped_memory['memory'])
+```
+
+```
+[AgentMessage(content='今天天气情况', sender='user', formatted=None, extra_info=None, type=None, receiver=None, stream_state=), AgentMessage(content='急', sender='Agent', formatted=None, extra_info=None, type=None, receiver=None, stream_state=)]
+------------------------------------------------------------------------------------------------------------------------
+[{'content': '今天天气情况', 'sender': 'user', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': }, {'content': '急', 'sender': 'Agent', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': }]
+```
+
+Clear the memory of this session(`session_id=0` by default):
+
+```python
+agent.memory.reset()
+```
+
+### Custom Message Aggregation
+
+`DefaultAggregator` is called under the hood to assemble and convert `AgentMessage` to OpenAI message format.
+
+```python
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
+ formatted_messages = self.aggregator.aggregate(
+ self.memory.get(session_id),
+ self.name,
+ self.output_format,
+ self.template,
+ )
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
+ ...
+```
+
+Implement a simple aggregator that can receive few-shots
+
+```python
+from typing import List, Union
+from lagent.memory import Memory
+from lagent.prompts import StrParser
+from lagent.agents.aggregator import DefaultAggregator
+
+class FewshotAggregator(DefaultAggregator):
+ def __init__(self, few_shot: List[dict] = None):
+ self.few_shot = few_shot or []
+
+ def aggregate(self,
+ messages: Memory,
+ name: str,
+ parser: StrParser = None,
+ system_instruction: Union[str, dict, List[dict]] = None) -> List[dict]:
+ _message = []
+ if system_instruction:
+ _message.extend(
+ self.aggregate_system_intruction(system_instruction))
+ _message.extend(self.few_shot)
+ messages = messages.get_memory()
+ for message in messages:
+ if message.sender == name:
+ _message.append(
+ dict(role='assistant', content=str(message.content)))
+ else:
+ user_message = message.content
+ if len(_message) > 0 and _message[-1]['role'] == 'user':
+ _message[-1]['content'] += user_message
+ else:
+ _message.append(dict(role='user', content=user_message))
+ return _message
+
+agent = Agent(
+ llm,
+ aggregator=FewshotAggregator(
+ [
+ {"role": "user", "content": "今天天气"},
+ {"role": "assistant", "content": "【晴】"},
+ ]
+ )
+)
+user_msg = AgentMessage(sender='user', content='昨天天气')
+bot_msg = agent(user_msg)
+print(bot_msg)
+```
+
+```
+content='【多云转晴,夜间有轻微降温】' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+### Flexible Response Formatting
+
+In `AgentMessage`, `formatted` is reserved to store information parsed by `output_format` from the model output.
+
+```python
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
+ ...
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
+ if self.output_format:
+ formatted_messages = self.output_format.parse_response(llm_response)
+ return AgentMessage(
+ sender=self.name,
+ content=llm_response,
+ formatted=formatted_messages,
+ )
+ ...
+```
+
+Use a tool parser as follows
+
+````python
+from lagent.prompts.parsers import ToolParser
+
+system_prompt = "逐步分析并编写Python代码解决以下问题。"
+parser = ToolParser(tool_type='code interpreter', begin='```python\n', end='\n```\n')
+llm.gen_params['stop_words'].append('\n```\n')
+agent = Agent(llm, system_prompt, output_format=parser)
+
+user_msg = AgentMessage(
+ sender='user',
+ content='Marie is thinking of a multiple of 63, while Jay is thinking of a '
+ 'factor of 63. They happen to be thinking of the same number. There are '
+ 'two possibilities for the number that each of them is thinking of, one '
+ 'positive and one negative. Find the product of these two numbers.')
+bot_msg = agent(user_msg)
+print(bot_msg.model_dump_json(indent=4))
+````
+
+````
+{
+ "content": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n```python\ndef find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
+ "sender": "Agent",
+ "formatted": {
+ "tool_type": "code interpreter",
+ "thought": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n",
+ "action": "def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
+ "status": 1
+ },
+ "extra_info": null,
+ "type": null,
+ "receiver": null,
+ "stream_state": 0
+}
+````
+
+### Consistency of Tool Calling
+
+`ActionExecutor` uses the same communication data structure as `Agent`, but requires the content of input `AgentMessage` to be a dict containing:
+
+- `name`: tool name, e.g. `'IPythonInterpreter'`, `'WebBrowser.search'`.
+- `parameters`: keyword arguments of the tool API, e.g. `{'command': 'import math;math.sqrt(2)'}`, `{'query': ['recent progress in AI']}`.
+
+You can register custom hooks for message conversion.
+
+```python
+from lagent.hooks import Hook
+from lagent.schema import ActionReturn, ActionStatusCode, AgentMessage
+from lagent.actions import ActionExecutor, IPythonInteractive
+
+class CodeProcessor(Hook):
+ def before_action(self, executor, message, session_id):
+ message = message.copy(deep=True)
+ message.content = dict(
+ name='IPythonInteractive', parameters={'command': message.formatted['action']}
+ )
+ return message
+
+ def after_action(self, executor, message, session_id):
+ action_return = message.content
+ if isinstance(action_return, ActionReturn):
+ if action_return.state == ActionStatusCode.SUCCESS:
+ response = action_return.format_result()
+ else:
+ response = action_return.errmsg
+ else:
+ response = action_return
+ message.content = response
+ return message
+
+executor = ActionExecutor(actions=[IPythonInteractive()], hooks=[CodeProcessor()])
+bot_msg = AgentMessage(
+ sender='Agent',
+ content='首先,我们需要...',
+ formatted={
+ 'tool_type': 'code interpreter',
+ 'thought': '首先,我们需要...',
+ 'action': 'def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)',
+ 'status': 1
+ })
+executor_msg = executor(bot_msg)
+print(executor_msg)
+```
+
+```
+content='3969.0' sender='ActionExecutor' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+**For convenience, Lagent provides `InternLMActionProcessor` which is adapted to messages formatted by `ToolParser` as mentioned above.**
+
+### Dual Interfaces
+
+Lagent adopts dual interface design, where almost every component(LLMs, actions, action executors...) has the corresponding asynchronous variant by prefixing its identifier with 'Async'. It is recommended to use synchronous agents for debugging and asynchronous ones for large-scale inference to make the most of idle CPU and GPU resources.
+
+However, make sure the internal consistency of agents, i.e. asynchronous agents should be equipped with asynchronous LLMs and asynchronous action executors that drive asynchronous tools.
+
+```python
+from lagent.llms import VllmModel, AsyncVllmModel, LMDeployPipeline, AsyncLMDeployPipeline
+from lagent.actions import ActionExecutor, AsyncActionExecutor, WebBrowser, AsyncWebBrowser
+from lagent.agents import Agent, AsyncAgent, AgentForInternLM, AsyncAgentForInternLM
+```
+
+______________________________________________________________________
+
+## Practice
+
+- **Try to implement `forward` instead of `__call__` of subclasses unless necessary.**
+- **Always include the `session_id` argument explicitly, which is designed for isolation of memory, LLM requests and tool invocation(e.g. maintain multiple independent IPython environments) in concurrency.**
+
+### Single Agent
+
+Math agents that solve problems by programming
+
+````python
+from lagent.agents.aggregator import InternLMToolAggregator
+
+class Coder(Agent):
+ def __init__(self, model_path, system_prompt, max_turn=3):
+ super().__init__()
+ llm = VllmModel(
+ path=model_path,
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['\n```\n', '<|im_end|>'],
+ max_new_tokens=1024,
+ )
+ self.agent = Agent(
+ llm,
+ system_prompt,
+ output_format=ToolParser(
+ tool_type='code interpreter', begin='```python\n', end='\n```\n'
+ ),
+ # `InternLMToolAggregator` is adapted to `ToolParser` for aggregating
+ # messages with tool invocations and execution results
+ aggregator=InternLMToolAggregator(),
+ )
+ self.executor = ActionExecutor([IPythonInteractive()], hooks=[CodeProcessor()])
+ self.max_turn = max_turn
+
+ def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = self.agent(message, session_id=session_id)
+ if message.formatted['tool_type'] is None:
+ return message
+ message = self.executor(message, session_id=session_id)
+ return message
+
+coder = Coder('Qwen/Qwen2-7B-Instruct', 'Solve the problem step by step with assistance of Python code')
+query = AgentMessage(
+ sender='user',
+ content='Find the projection of $\\mathbf{a}$ onto $\\mathbf{b} = '
+ '\\begin{pmatrix} 1 \\\\ -3 \\end{pmatrix}$ if $\\mathbf{a} \\cdot \\mathbf{b} = 2.$'
+)
+answer = coder(query)
+print(answer.content)
+print('-' * 120)
+for msg in coder.state_dict()['agent.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+````
+
+### Multiple Agents
+
+Asynchronous blogging agents that improve writing quality by self-refinement ([original AutoGen example](https://microsoft.github.io/autogen/0.2/docs/topics/prompting-and-reasoning/reflection/))
+
+```python
+import asyncio
+import os
+from lagent.llms import AsyncGPTAPI
+from lagent.agents import AsyncAgent
+os.environ['OPENAI_API_KEY'] = 'YOUR_API_KEY'
+
+class PrefixedMessageHook(Hook):
+ def __init__(self, prefix: str, senders: list = None):
+ self.prefix = prefix
+ self.senders = senders or []
+
+ def before_agent(self, agent, messages, session_id):
+ for message in messages:
+ if message.sender in self.senders:
+ message.content = self.prefix + message.content
+
+class AsyncBlogger(AsyncAgent):
+ def __init__(self, model_path, writer_prompt, critic_prompt, critic_prefix='', max_turn=3):
+ super().__init__()
+ llm = AsyncGPTAPI(model_type=model_path, retry=5, max_new_tokens=2048)
+ self.writer = AsyncAgent(llm, writer_prompt, name='writer')
+ self.critic = AsyncAgent(
+ llm, critic_prompt, name='critic', hooks=[PrefixedMessageHook(critic_prefix, ['writer'])]
+ )
+ self.max_turn = max_turn
+
+ async def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = await self.writer(message, session_id=session_id)
+ message = await self.critic(message, session_id=session_id)
+ return await self.writer(message, session_id=session_id)
+
+blogger = AsyncBlogger(
+ 'gpt-4o-2024-05-13',
+ writer_prompt="You are an writing assistant tasked to write engaging blogpost. You try to generate the best blogpost possible for the user's request. "
+ "If the user provides critique, then respond with a revised version of your previous attempts",
+ critic_prompt="Generate critique and recommendations on the writing. Provide detailed recommendations, including requests for length, depth, style, etc..",
+ critic_prefix='Reflect and provide critique on the following writing. \n\n',
+)
+user_prompt = (
+ "Write an engaging blogpost on the recent updates in {topic}. "
+ "The blogpost should be engaging and understandable for general audience. "
+ "Should have more than 3 paragraphes but no longer than 1000 words.")
+bot_msgs = asyncio.get_event_loop().run_until_complete(
+ asyncio.gather(
+ *[
+ blogger(AgentMessage(sender='user', content=user_prompt.format(topic=topic)), session_id=i)
+ for i, topic in enumerate(['AI', 'Biotechnology', 'New Energy', 'Video Games', 'Pop Music'])
+ ]
+ )
+)
+print(bot_msgs[0].content)
+print('-' * 120)
+for msg in blogger.state_dict(session_id=0)['writer.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+print('-' * 120)
+for msg in blogger.state_dict(session_id=0)['critic.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+```
+
+A multi-agent workflow that performs information retrieval, data collection and chart plotting ([original LangGraph example](https://vijaykumarkartha.medium.com/multiple-ai-agents-creating-multi-agent-workflows-using-langgraph-and-langchain-0587406ec4e6))
+
+
+
+
+
+````python
+import json
+from lagent.actions import IPythonInterpreter, WebBrowser, ActionExecutor
+from lagent.agents.stream import get_plugin_prompt
+from lagent.llms import GPTAPI
+from lagent.hooks import InternLMActionProcessor
+
+TOOL_TEMPLATE = (
+ "You are a helpful AI assistant, collaborating with other assistants. Use the provided tools to progress"
+ " towards answering the question. If you are unable to fully answer, that's OK, another assistant with"
+ " different tools will help where you left off. Execute what you can to make progress. If you or any of"
+ " the other assistants have the final answer or deliverable, prefix your response with {finish_pattern}"
+ " so the team knows to stop. You have access to the following tools:\n{tool_description}\nPlease provide"
+ " your thought process when you need to use a tool, followed by the call statement in this format:"
+ "\n{invocation_format}\\\\n**{system_prompt}**"
+)
+
+class DataVisualizer(Agent):
+ def __init__(self, model_path, research_prompt, chart_prompt, finish_pattern="Final Answer", max_turn=10):
+ super().__init__()
+ llm = GPTAPI(model_path, key='YOUR_OPENAI_API_KEY', retry=5, max_new_tokens=1024, stop_words=["```\n"])
+ interpreter, browser = IPythonInterpreter(), WebBrowser("BingSearch", api_key="YOUR_BING_API_KEY")
+ self.researcher = Agent(
+ llm,
+ TOOL_TEMPLATE.format(
+ finish_pattern=finish_pattern,
+ tool_description=get_plugin_prompt(browser),
+ invocation_format='```json\n{"name": {{tool name}}, "parameters": {{keyword arguments}}}\n```\n',
+ system_prompt=research_prompt,
+ ),
+ output_format=ToolParser(
+ "browser",
+ begin="```json\n",
+ end="\n```\n",
+ validate=lambda x: json.loads(x.rstrip('`')),
+ ),
+ aggregator=InternLMToolAggregator(),
+ name="researcher",
+ )
+ self.charter = Agent(
+ llm,
+ TOOL_TEMPLATE.format(
+ finish_pattern=finish_pattern,
+ tool_description=interpreter.name,
+ invocation_format='```python\n{{code}}\n```\n',
+ system_prompt=chart_prompt,
+ ),
+ output_format=ToolParser(
+ "interpreter",
+ begin="```python\n",
+ end="\n```\n",
+ validate=lambda x: x.rstrip('`'),
+ ),
+ aggregator=InternLMToolAggregator(),
+ name="charter",
+ )
+ self.executor = ActionExecutor([interpreter, browser], hooks=[InternLMActionProcessor()])
+ self.finish_pattern = finish_pattern
+ self.max_turn = max_turn
+
+ def forward(self, message, session_id=0):
+ for _ in range(self.max_turn):
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"]) # override llm stop words
+ while message.formatted["tool_type"]:
+ message = self.executor(message, session_id=session_id)
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"])
+ if self.finish_pattern in message.content:
+ return message
+ message = self.charter(message)
+ while message.formatted["tool_type"]:
+ message = self.executor(message, session_id=session_id)
+ message = self.charter(message, session_id=session_id)
+ if self.finish_pattern in message.content:
+ return message
+ return message
+
+visualizer = DataVisualizer(
+ "gpt-4o-2024-05-13",
+ research_prompt="You should provide accurate data for the chart generator to use.",
+ chart_prompt="Any charts you display will be visible by the user.",
+)
+user_msg = AgentMessage(
+ sender='user',
+ content="Fetch the China's GDP over the past 5 years, then draw a line graph of it. Once you code it up, finish.")
+bot_msg = visualizer(user_msg)
+print(bot_msg.content)
+json.dump(visualizer.state_dict(), open('visualizer.json', 'w'), ensure_ascii=False, indent=4)
+````
+
+## Citation
+
+If you find this project useful in your research, please consider cite:
+
+```latex
+@misc{lagent2023,
+ title={{Lagent: InternLM} a lightweight open-source framework that allows users to efficiently build large language model(LLM)-based agents},
+ author={Lagent Developer Team},
+ howpublished = {\url{https://github.com/InternLM/lagent}},
+ year={2023}
+}
+```
+
+## License
+
+This project is released under the [Apache 2.0 license](LICENSE).
+
+🔼 Back to top
diff --git a/docs/en/Makefile b/docs/en/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..d4bb2cbb9eddb1bb1b4f366623044af8e4830919
--- /dev/null
+++ b/docs/en/Makefile
@@ -0,0 +1,20 @@
+# Minimal makefile for Sphinx documentation
+#
+
+# You can set these variables from the command line, and also
+# from the environment for the first two.
+SPHINXOPTS ?=
+SPHINXBUILD ?= sphinx-build
+SOURCEDIR = .
+BUILDDIR = _build
+
+# Put it first so that "make" without argument is like "make help".
+help:
+ @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
+
+.PHONY: help Makefile
+
+# Catch-all target: route all unknown targets to Sphinx using the new
+# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
+%: Makefile
+ @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
diff --git a/docs/en/_static/css/readthedocs.css b/docs/en/_static/css/readthedocs.css
new file mode 100644
index 0000000000000000000000000000000000000000..5f3c55de0804e7f29b800d98c05f98ee5178be76
--- /dev/null
+++ b/docs/en/_static/css/readthedocs.css
@@ -0,0 +1,6 @@
+.header-logo {
+ background-image: url("../images/lagent_icon.png");
+ background-size: 40px 40px;
+ height: 40px;
+ width: 40px;
+}
diff --git a/docs/en/_static/images/lagent_icon.png b/docs/en/_static/images/lagent_icon.png
new file mode 100644
index 0000000000000000000000000000000000000000..635b2f7851faf43641d18b6d27b6e6791a13073d
Binary files /dev/null and b/docs/en/_static/images/lagent_icon.png differ
diff --git a/docs/en/_static/images/robot.png b/docs/en/_static/images/robot.png
new file mode 100644
index 0000000000000000000000000000000000000000..4979d4f2ee4743b21b64ff1bbdd978554a176b7e
Binary files /dev/null and b/docs/en/_static/images/robot.png differ
diff --git a/docs/en/_static/js/collapsed.js b/docs/en/_static/js/collapsed.js
new file mode 100644
index 0000000000000000000000000000000000000000..8c4ac431dc72e2442826ae716f669fabce7220c0
--- /dev/null
+++ b/docs/en/_static/js/collapsed.js
@@ -0,0 +1 @@
+var collapsedSections = ['API Reference']
diff --git a/docs/en/_static/js/table.js b/docs/en/_static/js/table.js
new file mode 100644
index 0000000000000000000000000000000000000000..8dacf477f33e81bba3a0c0edc11b135f648b1f0a
--- /dev/null
+++ b/docs/en/_static/js/table.js
@@ -0,0 +1,31 @@
+$(document).ready(function () {
+ table = $('.model-summary').DataTable({
+ "stateSave": false,
+ "lengthChange": false,
+ "pageLength": 10,
+ "order": [],
+ "scrollX": true,
+ "columnDefs": [
+ { "type": "summary", targets: '_all' },
+ ]
+ });
+ // Override the default sorting for the summary columns, which
+ // never takes the "-" character into account.
+ jQuery.extend(jQuery.fn.dataTableExt.oSort, {
+ "summary-asc": function (str1, str2) {
+ if (str1 == "-
")
+ return 1;
+ if (str2 == "-
")
+ return -1;
+ return ((str1 < str2) ? -1 : ((str1 > str2) ? 1 : 0));
+ },
+
+ "summary-desc": function (str1, str2) {
+ if (str1 == "-
")
+ return 1;
+ if (str2 == "-
")
+ return -1;
+ return ((str1 < str2) ? 1 : ((str1 > str2) ? -1 : 0));
+ }
+ });
+})
diff --git a/docs/en/_templates/autoapi/index.rst b/docs/en/_templates/autoapi/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..b2ba92c0fdead48ec6602736fe18163f32f7bdf2
--- /dev/null
+++ b/docs/en/_templates/autoapi/index.rst
@@ -0,0 +1,14 @@
+API Reference
+=============
+
+This page contains auto-generated API reference documentation.
+
+.. toctree::
+ :titlesonly:
+ :maxdepth: 3
+
+ {% for page in pages %}
+ {% if page.top_level_object and page.display %}
+ {{ page.include_path }}
+ {% endif %}
+ {% endfor %}
diff --git a/docs/en/_templates/autoapi/python/module.rst b/docs/en/_templates/autoapi/python/module.rst
new file mode 100644
index 0000000000000000000000000000000000000000..7cb039f1b8b6712cb431be0d3b3d9c8615e36a12
--- /dev/null
+++ b/docs/en/_templates/autoapi/python/module.rst
@@ -0,0 +1,112 @@
+{% if not obj.display %}
+:orphan:
+
+{% endif %}
+:py:mod:`{{ obj.name if obj.name.count(".") <= 1 else obj.short_name }}`
+=========={{ "=" * (obj.name|length if obj.name.count(".") <= 1 else obj.short_name|length) }}
+
+.. py:module:: {{ obj.name }}
+
+{% if obj.docstring %}
+.. autoapi-nested-parse::
+
+ {{ obj.docstring|indent(3) }}
+
+{% endif %}
+
+{% block subpackages %}
+{% set visible_subpackages = obj.subpackages|selectattr("display")|list %}
+{% if visible_subpackages %}
+Subpackages
+-----------
+.. toctree::
+ :titlesonly:
+ :maxdepth: 3
+
+{% for subpackage in visible_subpackages %}
+ {{ subpackage.short_name }}/index.rst
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+{% block submodules %}
+{% set visible_submodules = obj.submodules|selectattr("display")|list %}
+{% if visible_submodules %}
+Submodules
+----------
+.. toctree::
+ :titlesonly:
+ :maxdepth: 1
+
+{% for submodule in visible_submodules %}
+ {{ submodule.short_name }}/index.rst
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+{% block content %}
+{% if obj.type is equalto("package") %}
+{% set visible_children = obj.children|selectattr("display")|list %}
+{% else %}
+{% set visible_children = obj.children|selectattr("display")|rejectattr("imported")|list %}
+{% endif %}
+{% if visible_children %}
+{{ obj.type|title }} Contents
+{{ "-" * obj.type|length }}---------
+
+{% set visible_classes = visible_children|selectattr("type", "equalto", "class")|list %}
+{% set visible_functions = visible_children|selectattr("type", "equalto", "function")|list %}
+{% set visible_attributes = visible_children|selectattr("type", "equalto", "data")|list %}
+{% if "show-module-summary" in autoapi_options and (visible_classes or visible_functions) %}
+{% block classes scoped %}
+{% if visible_classes %}
+Classes
+~~~~~~~
+
+.. autoapisummary::
+
+{% for klass in visible_classes %}
+ {{ klass.id }}
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+
+{% block functions scoped %}
+{% if visible_functions %}
+Functions
+~~~~~~~~~
+
+.. autoapisummary::
+
+{% for function in visible_functions %}
+ {{ function.id }}
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+
+{% block attributes scoped %}
+{% if visible_attributes %}
+Attributes
+~~~~~~~~~~
+
+.. autoapisummary::
+
+{% for attribute in visible_attributes %}
+ {{ attribute.id }}
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+{% endif %}
+{% for obj_item in visible_children %}
+{{ obj_item.render()|indent(0) }}
+{% endfor %}
+{% endif %}
+{% endblock %}
diff --git a/docs/en/_templates/classtemplate.rst b/docs/en/_templates/classtemplate.rst
new file mode 100644
index 0000000000000000000000000000000000000000..4f74842394ec9807fb1ae2d8f05a8a57e9a2e24c
--- /dev/null
+++ b/docs/en/_templates/classtemplate.rst
@@ -0,0 +1,14 @@
+.. role:: hidden
+ :class: hidden-section
+.. currentmodule:: {{ module }}
+
+
+{{ name | underline}}
+
+.. autoclass:: {{ name }}
+ :members:
+
+
+..
+ autogenerated from source/_templates/classtemplate.rst
+ note it does not have :inherited-members:
diff --git a/docs/en/changelog.md b/docs/en/changelog.md
new file mode 100644
index 0000000000000000000000000000000000000000..8679d19b0ef30545048bdb8da552050f5132206e
--- /dev/null
+++ b/docs/en/changelog.md
@@ -0,0 +1,16 @@
+## Changelog
+
+### v0.1.2 (24/10/2023)
+
+#### Highlights
+
+- Support Efficient Inference Engine [lmdeploy turbomind](https://github.com/InternLM/lmdeploy/tree/main)
+
+#### New Features
+
+- Support Efficient Inference Engine [TurboMind](https://github.com/InternLM/lmdeploy/tree/main): Based on lmdeploy turbomind, Lagent supports the inference of LLaMA and its variant models on NVIDIA GPUs. (#47)
+
+#### Contributors
+
+A total of 2 developers contributed to this release.
+Thanks @Harold-lkk @jiangningliu30
diff --git a/docs/en/conf.py b/docs/en/conf.py
new file mode 100644
index 0000000000000000000000000000000000000000..0d92c9f4145cf7b7340e34ba2124a253e729fff0
--- /dev/null
+++ b/docs/en/conf.py
@@ -0,0 +1,108 @@
+# Configuration file for the Sphinx documentation builder.
+#
+# This file only contains a selection of the most common options. For a full
+# list see the documentation:
+# https://www.sphinx-doc.org/en/master/usage/configuration.html
+
+# -- Path setup --------------------------------------------------------------
+
+# If extensions (or modules to document with autodoc) are in another directory,
+# add these directories to sys.path here. If the directory is relative to the
+# documentation root, use os.path.abspath to make it absolute, like shown here.
+
+import os
+import re
+import sys
+
+sys.path.insert(0, os.path.abspath('../..'))
+
+# -- Project information -----------------------------------------------------
+project = 'Lagent'
+copyright = '2020-2030, InternLM'
+author = 'InternLM'
+language = 'en'
+
+# The full version, including alpha/beta/rc tags
+version_file = '../../lagent/version.py'
+with open(version_file) as f:
+ exec(compile(f.read(), version_file, 'exec'))
+__version__ = locals()['__version__']
+release = __version__
+
+# -- General configuration ---------------------------------------------------
+
+# Add any Sphinx extension module names here, as strings. They can be
+# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
+# ones.
+extensions = [
+ 'sphinx_rtd_theme',
+ 'myst_nb',
+ 'autoapi.extension',
+ 'sphinx_markdown_tables',
+ 'sphinx.ext.autodoc',
+ 'sphinx.ext.napoleon',
+ 'sphinx.ext.viewcode',
+]
+
+nb_output_stderr = 'remove-warn'
+autodoc_typehints = 'description'
+
+# sphinx-autoapi configuration
+autoapi_dirs = ['../../lagent']
+autoapi_options = [
+ 'members',
+ 'undoc-members',
+ 'show-inheritance',
+ 'show-module-summary',
+]
+autoapi_ignore = ['*migrations*', '*command.py', '*cli.py']
+autoapi_template_dir = '_templates/autoapi'
+autoapi_add_toctree_entry = False
+
+# Add any paths that contain templates here, relative to this directory.
+templates_path = ['_templates']
+
+# List of patterns, relative to source directory, that match files and
+# directories to ignore when looking for source files.
+# This pattern also affects html_static_path and html_extra_path.
+exclude_patterns = []
+
+# -- Options for HTML output -------------------------------------------------
+
+# The theme to use for HTML and HTML Help pages. See the documentation for
+# a list of builtin themes.
+#
+html_theme = 'sphinx_rtd_theme'
+html_theme_options = {
+ 'navigation_depth': 3,
+ 'titles_only': False,
+ 'style_nav_header_background': '#4fabab',
+}
+html_context = {
+ 'display_github': True,
+ 'github_host': 'github.com',
+ 'github_user': 'InternLM',
+ 'github_repo': 'lagent',
+ 'github_version': 'main',
+ 'conf_py_path': '/docs/en/',
+}
+html_title = 'Lagent'
+html_logo = '../imgs/lagent_logo.png'
+html_favicon = '../imgs/lagent_icon.png'
+
+master_doc = 'index'
+
+# Add any paths that contain custom static files (such as style sheets) here,
+# relative to this directory. They are copied after the builtin static files,
+# so a file named 'default.css' will overwrite the builtin 'default.css'.
+html_static_path = ['_static']
+
+
+def custom_skip(app, what, name, obj, skip, options):
+ if what in ['data', 'function', 'class'] and re.search('logger', name):
+ skip = True
+ return skip
+
+
+def setup(sphinx):
+ sphinx.connect('autoapi-skip-member', custom_skip)
diff --git a/docs/en/docutils.conf b/docs/en/docutils.conf
new file mode 100644
index 0000000000000000000000000000000000000000..0c00c84688701117f231fd0c8ec295fb747b7d8f
--- /dev/null
+++ b/docs/en/docutils.conf
@@ -0,0 +1,2 @@
+[html writers]
+table_style: colwidths-auto
diff --git a/docs/en/get_started/install.md b/docs/en/get_started/install.md
new file mode 100644
index 0000000000000000000000000000000000000000..844bd19ef1fff067822a4e97711dc292158eb903
--- /dev/null
+++ b/docs/en/get_started/install.md
@@ -0,0 +1,19 @@
+# Installation
+
+## With pip
+
+Install with pip (Recommended).
+
+```bash
+pip install lagent
+```
+
+## From source
+
+Optionally, you could also build Lagent from source in case you want to modify the code:
+
+```bash
+git clone https://github.com/InternLM/lagent.git
+cd lagent
+pip install -e .
+```
diff --git a/docs/en/get_started/quickstart.md b/docs/en/get_started/quickstart.md
new file mode 100644
index 0000000000000000000000000000000000000000..fb4fb54b952d9d7158a8be47b3a6a86976a10e88
--- /dev/null
+++ b/docs/en/get_started/quickstart.md
@@ -0,0 +1,485 @@
+# How to Use Lagent
+
+Lagent v1.0 is inspired by the design philosophy of PyTorch. We expect that the analogy of neural network layers will make the workflow clearer and more intuitive, so users only need to focus on creating layers and defining message passing between them in a Pythonic way. This is a simple tutorial to get you quickly started with building multi-agent applications.
+
+## Core Ideas
+
+### Models as Agents
+
+Agents use `AgentMessage` for communication.
+
+```python
+from typing import Dict, List
+from lagent.agents import Agent
+from lagent.schema import AgentMessage
+from lagent.llms import VllmModel, INTERNLM2_META
+
+llm = VllmModel(
+ path='Qwen/Qwen2-7B-Instruct',
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>'],
+ max_new_tokens=1024,
+)
+system_prompt = '你的回答只能从“典”、“孝”、“急”三个字中选一个。'
+agent = Agent(llm, system_prompt)
+
+user_msg = AgentMessage(sender='user', content='今天天气情况')
+bot_msg = agent(user_msg)
+print(bot_msg)
+```
+
+```
+content='急' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+### Memory as State
+
+Both input and output messages will be added to the memory of `Agent` in each forward pass. This is performed in `__call__` rather than `forward`. See the following pseudo code
+
+```python
+ def __call__(self, *message):
+ message = pre_hooks(message)
+ add_memory(message)
+ message = self.forward(*message)
+ add_memory(message)
+ message = post_hooks(message)
+ return message
+```
+
+Inspect the memory in two ways
+
+```python
+memory: List[AgentMessage] = agent.memory.get_memory()
+print(memory)
+print('-' * 120)
+dumped_memory: Dict[str, List[dict]] = agent.state_dict()
+print(dumped_memory['memory'])
+```
+
+```
+[AgentMessage(content='今天天气情况', sender='user', formatted=None, extra_info=None, type=None, receiver=None, stream_state=), AgentMessage(content='急', sender='Agent', formatted=None, extra_info=None, type=None, receiver=None, stream_state=)]
+------------------------------------------------------------------------------------------------------------------------
+[{'content': '今天天气情况', 'sender': 'user', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': }, {'content': '急', 'sender': 'Agent', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': }]
+```
+
+Clear the memory of this session(`session_id=0` by default):
+
+```python
+agent.memory.reset()
+```
+
+### Custom Message Aggregation
+
+`DefaultAggregator` is called under the hood to assemble and convert `AgentMessage` to OpenAI message format.
+
+```python
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
+ formatted_messages = self.aggregator.aggregate(
+ self.memory.get(session_id),
+ self.name,
+ self.output_format,
+ self.template,
+ )
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
+ ...
+```
+
+Implement a simple aggregator that can receive few-shots
+
+```python
+from typing import List, Union
+from lagent.memory import Memory
+from lagent.prompts import StrParser
+from lagent.agents.aggregator import DefaultAggregator
+
+class FewshotAggregator(DefaultAggregator):
+ def __init__(self, few_shot: List[dict] = None):
+ self.few_shot = few_shot or []
+
+ def aggregate(self,
+ messages: Memory,
+ name: str,
+ parser: StrParser = None,
+ system_instruction: Union[str, dict, List[dict]] = None) -> List[dict]:
+ _message = []
+ if system_instruction:
+ _message.extend(
+ self.aggregate_system_intruction(system_instruction))
+ _message.extend(self.few_shot)
+ messages = messages.get_memory()
+ for message in messages:
+ if message.sender == name:
+ _message.append(
+ dict(role='assistant', content=str(message.content)))
+ else:
+ user_message = message.content
+ if len(_message) > 0 and _message[-1]['role'] == 'user':
+ _message[-1]['content'] += user_message
+ else:
+ _message.append(dict(role='user', content=user_message))
+ return _message
+
+agent = Agent(
+ llm,
+ aggregator=FewshotAggregator(
+ [
+ {"role": "user", "content": "今天天气"},
+ {"role": "assistant", "content": "【晴】"},
+ ]
+ )
+)
+user_msg = AgentMessage(sender='user', content='昨天天气')
+bot_msg = agent(user_msg)
+print(bot_msg)
+```
+
+```
+content='【多云转晴,夜间有轻微降温】' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+### Flexible Response Formatting
+
+In `AgentMessage`, `formatted` is reserved to store information parsed by `output_format` from the model output.
+
+```python
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
+ ...
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
+ if self.output_format:
+ formatted_messages = self.output_format.parse_response(llm_response)
+ return AgentMessage(
+ sender=self.name,
+ content=llm_response,
+ formatted=formatted_messages,
+ )
+ ...
+```
+
+Use a tool parser as follows
+
+````python
+from lagent.prompts.parsers import ToolParser
+
+system_prompt = "逐步分析并编写Python代码解决以下问题。"
+parser = ToolParser(tool_type='code interpreter', begin='```python\n', end='\n```\n')
+llm.gen_params['stop_words'].append('\n```\n')
+agent = Agent(llm, system_prompt, output_format=parser)
+
+user_msg = AgentMessage(
+ sender='user',
+ content='Marie is thinking of a multiple of 63, while Jay is thinking of a '
+ 'factor of 63. They happen to be thinking of the same number. There are '
+ 'two possibilities for the number that each of them is thinking of, one '
+ 'positive and one negative. Find the product of these two numbers.')
+bot_msg = agent(user_msg)
+print(bot_msg.model_dump_json(indent=4))
+````
+
+````
+{
+ "content": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n```python\ndef find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
+ "sender": "Agent",
+ "formatted": {
+ "tool_type": "code interpreter",
+ "thought": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n",
+ "action": "def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
+ "status": 1
+ },
+ "extra_info": null,
+ "type": null,
+ "receiver": null,
+ "stream_state": 0
+}
+````
+
+### Consistency of Tool Calling
+
+`ActionExecutor` uses the same communication data structure as `Agent`, but requires the content of input `AgentMessage` to be a dict containing:
+
+- `name`: tool name, e.g. `'IPythonInterpreter'`, `'WebBrowser.search'`.
+- `parameters`: keyword arguments of the tool API, e.g. `{'command': 'import math;math.sqrt(2)'}`, `{'query': ['recent progress in AI']}`.
+
+You can register custom hooks for message conversion.
+
+```python
+from lagent.hooks import Hook
+from lagent.schema import ActionReturn, ActionStatusCode, AgentMessage
+from lagent.actions import ActionExecutor, IPythonInteractive
+
+class CodeProcessor(Hook):
+ def before_action(self, executor, message, session_id):
+ message = message.copy(deep=True)
+ message.content = dict(
+ name='IPythonInteractive', parameters={'command': message.formatted['action']}
+ )
+ return message
+
+ def after_action(self, executor, message, session_id):
+ action_return = message.content
+ if isinstance(action_return, ActionReturn):
+ if action_return.state == ActionStatusCode.SUCCESS:
+ response = action_return.format_result()
+ else:
+ response = action_return.errmsg
+ else:
+ response = action_return
+ message.content = response
+ return message
+
+executor = ActionExecutor(actions=[IPythonInteractive()], hooks=[CodeProcessor()])
+bot_msg = AgentMessage(
+ sender='Agent',
+ content='首先,我们需要...',
+ formatted={
+ 'tool_type': 'code interpreter',
+ 'thought': '首先,我们需要...',
+ 'action': 'def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)',
+ 'status': 1
+ })
+executor_msg = executor(bot_msg)
+print(executor_msg)
+```
+
+```
+content='3969.0' sender='ActionExecutor' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+**For convenience, Lagent provides `InternLMActionProcessor` which is adapted to messages formatted by `ToolParser` as mentioned above.**
+
+### Dual Interfaces
+
+Lagent adopts dual interface design, where almost every component(LLMs, actions, action executors...) has the corresponding asynchronous variant by prefixing its identifier with 'Async'. It is recommended to use synchronous agents for debugging and asynchronous ones for large-scale inference to make the most of idle CPU and GPU resources.
+
+However, make sure the internal consistency of agents, i.e. asynchronous agents should be equipped with asynchronous LLMs and asynchronous action executors that drive asynchronous tools.
+
+```python
+from lagent.llms import VllmModel, AsyncVllmModel, LMDeployPipeline, AsyncLMDeployPipeline
+from lagent.actions import ActionExecutor, AsyncActionExecutor, WebBrowser, AsyncWebBrowser
+from lagent.agents import Agent, AsyncAgent, AgentForInternLM, AsyncAgentForInternLM
+```
+
+______________________________________________________________________
+
+## Practice
+
+- **Try to implement `forward` instead of `__call__` of subclasses unless necessary.**
+- **Always include the `session_id` argument explicitly, which is designed for isolation of memory, LLM requests and tool invocation(e.g. maintain multiple independent IPython environments) in concurrency.**
+
+### Single Agent
+
+Math agents that solve problems by programming
+
+````python
+from lagent.agents.aggregator import InternLMToolAggregator
+
+class Coder(Agent):
+ def __init__(self, model_path, system_prompt, max_turn=3):
+ super().__init__()
+ llm = VllmModel(
+ path=model_path,
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['\n```\n', '<|im_end|>'],
+ max_new_tokens=1024,
+ )
+ self.agent = Agent(
+ llm,
+ system_prompt,
+ output_format=ToolParser(
+ tool_type='code interpreter', begin='```python\n', end='\n```\n'
+ ),
+ # `InternLMToolAggregator` is adapted to `ToolParser` for aggregating
+ # messages with tool invocations and execution results
+ aggregator=InternLMToolAggregator(),
+ )
+ self.executor = ActionExecutor([IPythonInteractive()], hooks=[CodeProcessor()])
+ self.max_turn = max_turn
+
+ def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = self.agent(message, session_id=session_id)
+ if message.formatted['tool_type'] is None:
+ return message
+ message = self.executor(message, session_id=session_id)
+ return message
+
+coder = Coder('Qwen/Qwen2-7B-Instruct', 'Solve the problem step by step with assistance of Python code')
+query = AgentMessage(
+ sender='user',
+ content='Find the projection of $\\mathbf{a}$ onto $\\mathbf{b} = '
+ '\\begin{pmatrix} 1 \\\\ -3 \\end{pmatrix}$ if $\\mathbf{a} \\cdot \\mathbf{b} = 2.$'
+)
+answer = coder(query)
+print(answer.content)
+print('-' * 120)
+for msg in coder.state_dict()['agent.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+````
+
+### Multiple Agents
+
+Asynchronous blogging agents that improve writing quality by self-refinement ([original AutoGen example](https://microsoft.github.io/autogen/0.2/docs/topics/prompting-and-reasoning/reflection/))
+
+```python
+import asyncio
+import os
+from lagent.llms import AsyncGPTAPI
+from lagent.agents import AsyncAgent
+os.environ['OPENAI_API_KEY'] = 'YOUR_API_KEY'
+
+class PrefixedMessageHook(Hook):
+ def __init__(self, prefix: str, senders: list = None):
+ self.prefix = prefix
+ self.senders = senders or []
+
+ def before_agent(self, agent, messages, session_id):
+ for message in messages:
+ if message.sender in self.senders:
+ message.content = self.prefix + message.content
+
+class AsyncBlogger(AsyncAgent):
+ def __init__(self, model_path, writer_prompt, critic_prompt, critic_prefix='', max_turn=3):
+ super().__init__()
+ llm = AsyncGPTAPI(model_type=model_path, retry=5, max_new_tokens=2048)
+ self.writer = AsyncAgent(llm, writer_prompt, name='writer')
+ self.critic = AsyncAgent(
+ llm, critic_prompt, name='critic', hooks=[PrefixedMessageHook(critic_prefix, ['writer'])]
+ )
+ self.max_turn = max_turn
+
+ async def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = await self.writer(message, session_id=session_id)
+ message = await self.critic(message, session_id=session_id)
+ return await self.writer(message, session_id=session_id)
+
+blogger = AsyncBlogger(
+ 'gpt-4o-2024-05-13',
+ writer_prompt="You are an writing assistant tasked to write engaging blogpost. You try to generate the best blogpost possible for the user's request. "
+ "If the user provides critique, then respond with a revised version of your previous attempts",
+ critic_prompt="Generate critique and recommendations on the writing. Provide detailed recommendations, including requests for length, depth, style, etc..",
+ critic_prefix='Reflect and provide critique on the following writing. \n\n',
+)
+user_prompt = (
+ "Write an engaging blogpost on the recent updates in {topic}. "
+ "The blogpost should be engaging and understandable for general audience. "
+ "Should have more than 3 paragraphes but no longer than 1000 words.")
+bot_msgs = asyncio.get_event_loop().run_until_complete(
+ asyncio.gather(
+ *[
+ blogger(AgentMessage(sender='user', content=user_prompt.format(topic=topic)), session_id=i)
+ for i, topic in enumerate(['AI', 'Biotechnology', 'New Energy', 'Video Games', 'Pop Music'])
+ ]
+ )
+)
+print(bot_msgs[0].content)
+print('-' * 120)
+for msg in blogger.state_dict(session_id=0)['writer.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+print('-' * 120)
+for msg in blogger.state_dict(session_id=0)['critic.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+```
+
+A multi-agent workflow that performs information retrieval, data collection and chart plotting ([original LangGraph example](https://vijaykumarkartha.medium.com/multiple-ai-agents-creating-multi-agent-workflows-using-langgraph-and-langchain-0587406ec4e6))
+
+
+
+
+
+````python
+import json
+from lagent.actions import IPythonInterpreter, WebBrowser, ActionExecutor
+from lagent.agents.stream import get_plugin_prompt
+from lagent.llms import GPTAPI
+from lagent.hooks import InternLMActionProcessor
+
+TOOL_TEMPLATE = (
+ "You are a helpful AI assistant, collaborating with other assistants. Use the provided tools to progress"
+ " towards answering the question. If you are unable to fully answer, that's OK, another assistant with"
+ " different tools will help where you left off. Execute what you can to make progress. If you or any of"
+ " the other assistants have the final answer or deliverable, prefix your response with {finish_pattern}"
+ " so the team knows to stop. You have access to the following tools:\n{tool_description}\nPlease provide"
+ " your thought process when you need to use a tool, followed by the call statement in this format:"
+ "\n{invocation_format}\\\\n**{system_prompt}**"
+)
+
+class DataVisualizer(Agent):
+ def __init__(self, model_path, research_prompt, chart_prompt, finish_pattern="Final Answer", max_turn=10):
+ super().__init__()
+ llm = GPTAPI(model_path, key='YOUR_OPENAI_API_KEY', retry=5, max_new_tokens=1024, stop_words=["```\n"])
+ interpreter, browser = IPythonInterpreter(), WebBrowser("BingSearch", api_key="YOUR_BING_API_KEY")
+ self.researcher = Agent(
+ llm,
+ TOOL_TEMPLATE.format(
+ finish_pattern=finish_pattern,
+ tool_description=get_plugin_prompt(browser),
+ invocation_format='```json\n{"name": {{tool name}}, "parameters": {{keyword arguments}}}\n```\n',
+ system_prompt=research_prompt,
+ ),
+ output_format=ToolParser(
+ "browser",
+ begin="```json\n",
+ end="\n```\n",
+ validate=lambda x: json.loads(x.rstrip('`')),
+ ),
+ aggregator=InternLMToolAggregator(),
+ name="researcher",
+ )
+ self.charter = Agent(
+ llm,
+ TOOL_TEMPLATE.format(
+ finish_pattern=finish_pattern,
+ tool_description=interpreter.name,
+ invocation_format='```python\n{{code}}\n```\n',
+ system_prompt=chart_prompt,
+ ),
+ output_format=ToolParser(
+ "interpreter",
+ begin="```python\n",
+ end="\n```\n",
+ validate=lambda x: x.rstrip('`'),
+ ),
+ aggregator=InternLMToolAggregator(),
+ name="charter",
+ )
+ self.executor = ActionExecutor([interpreter, browser], hooks=[InternLMActionProcessor()])
+ self.finish_pattern = finish_pattern
+ self.max_turn = max_turn
+
+ def forward(self, message, session_id=0):
+ for _ in range(self.max_turn):
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"]) # override llm stop words
+ while message.formatted["tool_type"]:
+ message = self.executor(message, session_id=session_id)
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"])
+ if self.finish_pattern in message.content:
+ return message
+ message = self.charter(message)
+ while message.formatted["tool_type"]:
+ message = self.executor(message, session_id=session_id)
+ message = self.charter(message, session_id=session_id)
+ if self.finish_pattern in message.content:
+ return message
+ return message
+
+visualizer = DataVisualizer(
+ "gpt-4o-2024-05-13",
+ research_prompt="You should provide accurate data for the chart generator to use.",
+ chart_prompt="Any charts you display will be visible by the user.",
+)
+user_msg = AgentMessage(
+ sender='user',
+ content="Fetch the China's GDP over the past 5 years, then draw a line graph of it. Once you code it up, finish.")
+bot_msg = visualizer(user_msg)
+print(bot_msg.content)
+json.dump(visualizer.state_dict(), open('visualizer.json', 'w'), ensure_ascii=False, indent=4)
+````
diff --git a/docs/en/index.rst b/docs/en/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..f51356c1d07724ba59c77574e960ecfbe9fdd72c
--- /dev/null
+++ b/docs/en/index.rst
@@ -0,0 +1,40 @@
+Welcome to Lagent's documentation!
+=======================================
+
+You can switch between English and Chinese in the lower-left corner of the layout.
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Get Started
+
+ get_started/install.md
+ get_started/quickstart.md
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Tutorials
+
+ tutorials/action.md
+
+.. toctree::
+ :caption: Switch Language
+
+ switch_language.md
+
+.. toctree::
+ :maxdepth: 1
+ :caption: API Reference
+
+ autoapi/lagent/actions/index
+ autoapi/lagent/agents/index
+ autoapi/lagent/llms/index
+ autoapi/lagent/utils/index
+ autoapi/lagent/schema/index
+ autoapi/lagent/version/index
+
+
+Indices and tables
+==================
+
+* :ref:`genindex`
+* :ref:`search`
diff --git a/docs/en/make.bat b/docs/en/make.bat
new file mode 100644
index 0000000000000000000000000000000000000000..8a3a0e25b49a52ade52c4f69ddeb0bc3d12527ff
--- /dev/null
+++ b/docs/en/make.bat
@@ -0,0 +1,36 @@
+@ECHO OFF
+
+pushd %~dp0
+
+REM Command file for Sphinx documentation
+
+if "%SPHINXBUILD%" == "" (
+ set SPHINXBUILD=sphinx-build
+)
+set SOURCEDIR=.
+set BUILDDIR=_build
+
+if "%1" == "" goto help
+
+%SPHINXBUILD% >NUL 2>NUL
+if errorlevel 9009 (
+ echo.
+ echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
+ echo.installed, then set the SPHINXBUILD environment variable to point
+ echo.to the full path of the 'sphinx-build' executable. Alternatively you
+ echo.may add the Sphinx directory to PATH.
+ echo.
+ echo.If you don't have Sphinx installed, grab it from
+ echo.http://sphinx-doc.org/
+ exit /b 1
+)
+
+
+%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+goto end
+
+:help
+%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+
+:end
+popd
diff --git a/docs/en/requirements.txt b/docs/en/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..89fbf86c01cb29f10f7e99c910248c4d5229da58
--- /dev/null
+++ b/docs/en/requirements.txt
@@ -0,0 +1,4 @@
+recommonmark
+sphinx
+sphinx_markdown_tables
+sphinx_rtd_theme
diff --git a/docs/en/switch_language.md b/docs/en/switch_language.md
new file mode 100644
index 0000000000000000000000000000000000000000..950b4f0e74e09858eb3d627b8694e039eaa95603
--- /dev/null
+++ b/docs/en/switch_language.md
@@ -0,0 +1,3 @@
+## English
+
+## 简体中文
diff --git a/docs/en/tutorials/action.md b/docs/en/tutorials/action.md
new file mode 100644
index 0000000000000000000000000000000000000000..a2fa17284d22c3fa8fa262ab025b16a480abf134
--- /dev/null
+++ b/docs/en/tutorials/action.md
@@ -0,0 +1,400 @@
+# Action
+
+Actions, also called **tools**, provide a suite of functions LLM-driven agents can use to interact with the real world and perform complex tasks.
+
+## Basic Concepts
+
+### Tool & Toolkit
+
+There are two categories of tools:
+
+- tool: provide only one API to call.
+- toolkit: implement multiple APIs that undertake different sub-tasks.
+
+### Tool Description
+
+In Lagent, the tool description is a dictionary containing the action's core information of usage, observed by LLMs for decision-making.
+
+For simple tools, the description can be created as follows
+
+```python
+TOOL_DESCRIPTION = {
+ 'name': 'bold', # name of the tool
+ 'description': 'a function used to make text bold', # introduce the tool's function
+ 'parameters': [ # a list of parameters the tool take.
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text'], # specify names of parameters required
+}
+```
+
+In some situations there may be optional `return_data`, `parameter_description` keys describing the returns and argument passing format respectively.
+
+```{attention}
+`parameter_description` is usually inserted into the tool description automatically by the action's parser. It will be introduced in [Interface Design](#interface-design) .
+```
+
+For toolkits, the description is very similar but nest submethods
+
+```python
+TOOL_DESCRIPTION = {
+ 'name': 'PhraseEmphasis', # name of the toolkit
+ 'description': 'a toolkit which provides different styles of text emphasis', # introduce the tool's function
+ 'api_list': [
+ {
+ 'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text']
+ },
+ {
+ 'name': 'italic',
+ 'description': 'make text italic',
+ 'parameters': [
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text']
+ }
+ ]
+}
+```
+
+## Make Functions Tools
+
+It's not necessary to prepare an extra description for a defined function. In Lagent we provide a decorator `tool_api` which can conveniently turn a function into a tool by automatically parsing the function's typehints and dosctrings to generate the description dictionary and binding it to an attribute `api_description`.
+
+```python
+from lagent import tool_api
+
+@tool_api
+def bold(text: str) -> str:
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: bold text
+ """
+ return '**' + text + '**'
+
+
+bold.api_description
+```
+
+```python
+{'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text']}
+```
+
+Once `returns_named_value` is enabled you should declare the name of the return data, which will be processed to form a new field `return_data`:
+
+```python
+@tool_api(returns_named_value=True)
+def bold(text: str) -> str:
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ bold_text (str): bold text
+ """
+ return '**' + text + '**'
+
+bold.api_description
+```
+
+```python
+{'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text'],
+ 'return_data': [{'name': 'bold_text',
+ 'description': 'bold text',
+ 'type': 'STRING'}]}
+```
+
+Sometimes the tool may return a `dict` or `tuple`, and you want to elaborate each member in `return_data` rather than take them as a whole. Set `explode_return=True` and list them in the return part of docstrings.
+
+```python
+@tool_api(explode_return=True)
+def list_args(a: str, b: int, c: float = 0.0) -> dict:
+ """Return arguments in dict format
+
+ Args:
+ a (str): a
+ b (int): b
+ c (float): c
+
+ Returns:
+ dict: input arguments
+ - a (str): a
+ - b (int): b
+ - c: c
+ """
+ return {'a': a, 'b': b, 'c': c}
+```
+
+```python
+{'name': 'list_args',
+ 'description': 'Return arguments in dict format',
+ 'parameters': [{'name': 'a', 'type': 'STRING', 'description': 'a'},
+ {'name': 'b', 'type': 'NUMBER', 'description': 'b'},
+ {'name': 'c', 'type': 'FLOAT', 'description': 'c'}],
+ 'required': ['a', 'b'],
+ 'return_data': [{'name': 'a', 'description': 'a', 'type': 'STRING'},
+ {'name': 'b', 'description': 'b', 'type': 'NUMBER'},
+ {'name': 'c', 'description': 'c'}]}
+```
+
+```{warning}
+Only Google style Python docstrings is currently supported.
+```
+
+## Interface Design
+
+`BaseAction(description=None, parser=JsonParser, enable=True)` is the base class all actions should inherit from. It takes three initialization arguments
+
+- **description**: a tool description dictionary, used set instance attribute `description`. Mostly you don't need explicitly pass this argument since the meta class of `BaseAction` will search methods decorated by `tool_api` and assemble their `api_description` as a class attribute `__tool_description__`, and if the initial `description` is left null, then `__tool_description__` will be copied as `description`.
+
+- **parser**: `BaseParser` class. It will instantialize a parser used to validate the arguments of APIs in `description`.
+
+ For example, `JsonParser` requires arguments passed in the format of JSON or `dict`. To make LLMs aware of this, It inserts a field `parameter_description` into the `description`.
+
+ ```python
+ from lagent import BaseAction
+
+ action = BaseAction(
+ {
+ 'name': 'bold',
+ 'description': 'a function used to make text bold',
+ 'parameters': [
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text']
+ }
+ )
+ action.description
+ ```
+
+ ```python
+ {'name': 'bold',
+ 'description': 'a function used to make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input content'}],
+ 'required': ['text'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}
+ ```
+
+- **enable**: specify whether the tool is available.
+
+### Custom Action
+
+A simple tool must have its `run` method implemented, while APIs of toolkits should avoid naming conflicts with this reserved word.
+
+```{tip}
+`run` is allowed not to be decorated by `tool_api` for simple tools unless you want to hint the return data.
+```
+
+```python
+class Bold(BaseAction):
+
+ def run(self, text: str):
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: bold text
+ """
+ return '**' + text + '**'
+
+class PhraseEmphasis(BaseAction):
+ """a toolkit which provides different styles of text emphasis"""
+
+ @tool_api
+ def bold(self, text):
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: bold text
+ """
+ return '**' + text + '**'
+
+ @tool_api
+ def italic(self, text):
+ """make text italic
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: italic text
+ """
+ return '*' + text + '*'
+
+# Inspect the default description
+# Bold.__tool_description__, PhraseEmphasis.__tool_description__
+```
+
+### Auto-registration
+
+Any subclass of `BaseAction` will be registered automatically. You can use `list_tools()` and `get_tool()` to view all tools and initialize by name.
+
+```python
+from lagent import list_tools, get_tool
+
+list_tools()
+```
+
+```python
+['BaseAction',
+ 'InvalidAction',
+ 'NoAction',
+ 'FinishAction',
+ 'ArxivSearch',
+ 'BINGMap',
+ 'GoogleScholar',
+ 'GoogleSearch',
+ 'IPythonInterpreter',
+ 'PPT',
+ 'PythonInterpreter',
+ 'Bold',
+ 'PhraseEmphasis']
+```
+
+Create a `PhraseEmphasis` object
+
+```python
+action = get_tool('PhraseEmphasis')
+action.description
+```
+
+```python
+{'name': 'PhraseEmphasis',
+ 'description': 'a toolkit which provides different styles of text emphasis',
+ 'api_list': [{'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
+ {'name': 'italic',
+ 'description': 'make text italic',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]}
+```
+
+## Tool Calling
+
+### Run a Tool
+
+`__call__` method of `Action` takes two arguments
+
+- `inputs`: It depends on the action's parser. Often a string in specific formats generated by LLMs.
+ - `JsonParser`: Allow passing arguments in the format of JSON string or Python `dict`.
+ - `TupleParser`: Allow passing arguments in the format of tuple string format or Python `tuple`.
+- `name`: Which API to call. Default is `run`.
+
+It returns an `ActionReturn` object which encapsulates calling details
+
+- `args`: Dictionary of action inputs.
+- `type`: Action name.
+- `result`: List of dicts. Each contains two keys: 'type' and 'content'. when errors occur, it is `None`.
+- `errmsg`: Error message. Default is `None`.
+
+Below is an example
+
+```python
+from lagent import IPythonInterpreter, TupleParser
+
+action1 = IPythonInterpreter()
+ret = action1('{"command": "import math;math.sqrt(100)"}')
+print(ret.result)
+ret = action1({'command': 'import math;math.sqrt(100)'})
+print(ret.result)
+
+action2 = IPythonInterpreter(parser=TupleParser)
+ret = action2('("import math;math.sqrt(100)", )')
+print(ret.result)
+ret = action2(('import math;math.sqrt(100)',))
+print(ret.result)
+```
+
+```python
+[{'type': 'text', 'content': '10.0'}]
+[{'type': 'text', 'content': '10.0'}]
+[{'type': 'text', 'content': '10.0'}]
+[{'type': 'text', 'content': '10.0'}]
+```
+
+### Dynamic Invocation
+
+Lagent provides an `ActionExecutor` to manage multiple tools. It will flatten `api_list` of toolkits and rename each `{tool_name}.{api_name}`.
+
+```python
+from lagent import ActionExecutor, ArxivSearch, IPythonInterpreter
+
+executor = ActionExecutor(actions=[ArxivSearch(), IPythonInterpreter()])
+executor.get_actions_info() # This information is fed to LLMs as the tool meta prompt
+```
+
+```python
+[{'name': 'ArxivSearch.get_arxiv_article_information',
+ 'description': 'Run Arxiv search and get the article meta information.',
+ 'parameters': [{'name': 'query',
+ 'type': 'STRING',
+ 'description': 'the content of search query'}],
+ 'required': ['query'],
+ 'return_data': [{'name': 'content',
+ 'description': 'a list of 3 arxiv search papers',
+ 'type': 'STRING'}],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
+ {'name': 'IPythonInterpreter',
+ 'description': "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.",
+ 'parameters': [{'name': 'command',
+ 'type': 'STRING',
+ 'description': 'Python code'},
+ {'name': 'timeout',
+ 'type': 'NUMBER',
+ 'description': 'Upper bound of waiting time for Python script execution.'}],
+ 'required': ['command'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]
+```
+
+Trigger an action through the executor
+
+```python
+ret = executor('IPythonInterpreter', '{"command": "import math;math.sqrt(100)"}')
+ret.result
+```
+
+```python
+[{'type': 'text', 'content': '10.0'}]
+```
diff --git a/docs/imgs/lagent_icon.png b/docs/imgs/lagent_icon.png
new file mode 100644
index 0000000000000000000000000000000000000000..635b2f7851faf43641d18b6d27b6e6791a13073d
Binary files /dev/null and b/docs/imgs/lagent_icon.png differ
diff --git a/docs/imgs/lagent_logo.png b/docs/imgs/lagent_logo.png
new file mode 100644
index 0000000000000000000000000000000000000000..f3125fc801708231c8ea5a830f538aff82795a4b
Binary files /dev/null and b/docs/imgs/lagent_logo.png differ
diff --git a/docs/zh_cn/.readthedocs.yaml b/docs/zh_cn/.readthedocs.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..aa8bd3053446533683e1df21c398465210c7852f
--- /dev/null
+++ b/docs/zh_cn/.readthedocs.yaml
@@ -0,0 +1,15 @@
+version: 2
+
+formats: all
+
+build:
+ os: ubuntu-22.04
+ tools:
+ python: "3.10"
+
+python:
+ install:
+ - requirements: requirements/docs.txt
+
+sphinx:
+ configuration: docs/zh_cn/conf.py
diff --git a/docs/zh_cn/Makefile b/docs/zh_cn/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..d4bb2cbb9eddb1bb1b4f366623044af8e4830919
--- /dev/null
+++ b/docs/zh_cn/Makefile
@@ -0,0 +1,20 @@
+# Minimal makefile for Sphinx documentation
+#
+
+# You can set these variables from the command line, and also
+# from the environment for the first two.
+SPHINXOPTS ?=
+SPHINXBUILD ?= sphinx-build
+SOURCEDIR = .
+BUILDDIR = _build
+
+# Put it first so that "make" without argument is like "make help".
+help:
+ @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
+
+.PHONY: help Makefile
+
+# Catch-all target: route all unknown targets to Sphinx using the new
+# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
+%: Makefile
+ @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
diff --git a/docs/zh_cn/_static/css/readthedocs.css b/docs/zh_cn/_static/css/readthedocs.css
new file mode 100644
index 0000000000000000000000000000000000000000..5f3c55de0804e7f29b800d98c05f98ee5178be76
--- /dev/null
+++ b/docs/zh_cn/_static/css/readthedocs.css
@@ -0,0 +1,6 @@
+.header-logo {
+ background-image: url("../images/lagent_icon.png");
+ background-size: 40px 40px;
+ height: 40px;
+ width: 40px;
+}
diff --git a/docs/zh_cn/_static/images/lagent_icon.png b/docs/zh_cn/_static/images/lagent_icon.png
new file mode 100644
index 0000000000000000000000000000000000000000..635b2f7851faf43641d18b6d27b6e6791a13073d
Binary files /dev/null and b/docs/zh_cn/_static/images/lagent_icon.png differ
diff --git a/docs/zh_cn/_static/images/robot.png b/docs/zh_cn/_static/images/robot.png
new file mode 100644
index 0000000000000000000000000000000000000000..4979d4f2ee4743b21b64ff1bbdd978554a176b7e
Binary files /dev/null and b/docs/zh_cn/_static/images/robot.png differ
diff --git a/docs/zh_cn/_static/js/collapsed.js b/docs/zh_cn/_static/js/collapsed.js
new file mode 100644
index 0000000000000000000000000000000000000000..36179c7b4e0de6fc7eaa6aa4c1aba5790b8b5c4d
--- /dev/null
+++ b/docs/zh_cn/_static/js/collapsed.js
@@ -0,0 +1 @@
+var collapsedSections = ['API 文档']
diff --git a/docs/zh_cn/_static/js/table.js b/docs/zh_cn/_static/js/table.js
new file mode 100644
index 0000000000000000000000000000000000000000..8dacf477f33e81bba3a0c0edc11b135f648b1f0a
--- /dev/null
+++ b/docs/zh_cn/_static/js/table.js
@@ -0,0 +1,31 @@
+$(document).ready(function () {
+ table = $('.model-summary').DataTable({
+ "stateSave": false,
+ "lengthChange": false,
+ "pageLength": 10,
+ "order": [],
+ "scrollX": true,
+ "columnDefs": [
+ { "type": "summary", targets: '_all' },
+ ]
+ });
+ // Override the default sorting for the summary columns, which
+ // never takes the "-" character into account.
+ jQuery.extend(jQuery.fn.dataTableExt.oSort, {
+ "summary-asc": function (str1, str2) {
+ if (str1 == "-
")
+ return 1;
+ if (str2 == "-
")
+ return -1;
+ return ((str1 < str2) ? -1 : ((str1 > str2) ? 1 : 0));
+ },
+
+ "summary-desc": function (str1, str2) {
+ if (str1 == "-
")
+ return 1;
+ if (str2 == "-
")
+ return -1;
+ return ((str1 < str2) ? 1 : ((str1 > str2) ? -1 : 0));
+ }
+ });
+})
diff --git a/docs/zh_cn/_templates/autoapi/index.rst b/docs/zh_cn/_templates/autoapi/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..b2ba92c0fdead48ec6602736fe18163f32f7bdf2
--- /dev/null
+++ b/docs/zh_cn/_templates/autoapi/index.rst
@@ -0,0 +1,14 @@
+API Reference
+=============
+
+This page contains auto-generated API reference documentation.
+
+.. toctree::
+ :titlesonly:
+ :maxdepth: 3
+
+ {% for page in pages %}
+ {% if page.top_level_object and page.display %}
+ {{ page.include_path }}
+ {% endif %}
+ {% endfor %}
diff --git a/docs/zh_cn/_templates/autoapi/python/module.rst b/docs/zh_cn/_templates/autoapi/python/module.rst
new file mode 100644
index 0000000000000000000000000000000000000000..7cb039f1b8b6712cb431be0d3b3d9c8615e36a12
--- /dev/null
+++ b/docs/zh_cn/_templates/autoapi/python/module.rst
@@ -0,0 +1,112 @@
+{% if not obj.display %}
+:orphan:
+
+{% endif %}
+:py:mod:`{{ obj.name if obj.name.count(".") <= 1 else obj.short_name }}`
+=========={{ "=" * (obj.name|length if obj.name.count(".") <= 1 else obj.short_name|length) }}
+
+.. py:module:: {{ obj.name }}
+
+{% if obj.docstring %}
+.. autoapi-nested-parse::
+
+ {{ obj.docstring|indent(3) }}
+
+{% endif %}
+
+{% block subpackages %}
+{% set visible_subpackages = obj.subpackages|selectattr("display")|list %}
+{% if visible_subpackages %}
+Subpackages
+-----------
+.. toctree::
+ :titlesonly:
+ :maxdepth: 3
+
+{% for subpackage in visible_subpackages %}
+ {{ subpackage.short_name }}/index.rst
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+{% block submodules %}
+{% set visible_submodules = obj.submodules|selectattr("display")|list %}
+{% if visible_submodules %}
+Submodules
+----------
+.. toctree::
+ :titlesonly:
+ :maxdepth: 1
+
+{% for submodule in visible_submodules %}
+ {{ submodule.short_name }}/index.rst
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+{% block content %}
+{% if obj.type is equalto("package") %}
+{% set visible_children = obj.children|selectattr("display")|list %}
+{% else %}
+{% set visible_children = obj.children|selectattr("display")|rejectattr("imported")|list %}
+{% endif %}
+{% if visible_children %}
+{{ obj.type|title }} Contents
+{{ "-" * obj.type|length }}---------
+
+{% set visible_classes = visible_children|selectattr("type", "equalto", "class")|list %}
+{% set visible_functions = visible_children|selectattr("type", "equalto", "function")|list %}
+{% set visible_attributes = visible_children|selectattr("type", "equalto", "data")|list %}
+{% if "show-module-summary" in autoapi_options and (visible_classes or visible_functions) %}
+{% block classes scoped %}
+{% if visible_classes %}
+Classes
+~~~~~~~
+
+.. autoapisummary::
+
+{% for klass in visible_classes %}
+ {{ klass.id }}
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+
+{% block functions scoped %}
+{% if visible_functions %}
+Functions
+~~~~~~~~~
+
+.. autoapisummary::
+
+{% for function in visible_functions %}
+ {{ function.id }}
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+
+{% block attributes scoped %}
+{% if visible_attributes %}
+Attributes
+~~~~~~~~~~
+
+.. autoapisummary::
+
+{% for attribute in visible_attributes %}
+ {{ attribute.id }}
+{% endfor %}
+
+
+{% endif %}
+{% endblock %}
+{% endif %}
+{% for obj_item in visible_children %}
+{{ obj_item.render()|indent(0) }}
+{% endfor %}
+{% endif %}
+{% endblock %}
diff --git a/docs/zh_cn/_templates/classtemplate.rst b/docs/zh_cn/_templates/classtemplate.rst
new file mode 100644
index 0000000000000000000000000000000000000000..4f74842394ec9807fb1ae2d8f05a8a57e9a2e24c
--- /dev/null
+++ b/docs/zh_cn/_templates/classtemplate.rst
@@ -0,0 +1,14 @@
+.. role:: hidden
+ :class: hidden-section
+.. currentmodule:: {{ module }}
+
+
+{{ name | underline}}
+
+.. autoclass:: {{ name }}
+ :members:
+
+
+..
+ autogenerated from source/_templates/classtemplate.rst
+ note it does not have :inherited-members:
diff --git a/docs/zh_cn/conf.py b/docs/zh_cn/conf.py
new file mode 100644
index 0000000000000000000000000000000000000000..b670f1249ac6c7fa3e78b1702b202fe2f79aecc5
--- /dev/null
+++ b/docs/zh_cn/conf.py
@@ -0,0 +1,108 @@
+# Configuration file for the Sphinx documentation builder.
+#
+# This file only contains a selection of the most common options. For a full
+# list see the documentation:
+# https://www.sphinx-doc.org/en/master/usage/configuration.html
+
+# -- Path setup --------------------------------------------------------------
+
+# If extensions (or modules to document with autodoc) are in another directory,
+# add these directories to sys.path here. If the directory is relative to the
+# documentation root, use os.path.abspath to make it absolute, like shown here.
+
+import os
+import re
+import sys
+
+sys.path.insert(0, os.path.abspath('../..'))
+
+# -- Project information -----------------------------------------------------
+project = 'Lagent'
+copyright = '2020-2030, InternLM'
+author = 'InternLM'
+language = 'zh_CN'
+
+# The full version, including alpha/beta/rc tags
+version_file = '../../lagent/version.py'
+with open(version_file) as f:
+ exec(compile(f.read(), version_file, 'exec'))
+__version__ = locals()['__version__']
+release = __version__
+
+# -- General configuration ---------------------------------------------------
+
+# Add any Sphinx extension module names here, as strings. They can be
+# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
+# ones.
+extensions = [
+ 'sphinx_rtd_theme',
+ 'myst_nb',
+ 'autoapi.extension',
+ 'sphinx_markdown_tables',
+ 'sphinx.ext.autodoc',
+ 'sphinx.ext.napoleon',
+ 'sphinx.ext.viewcode',
+]
+
+nb_output_stderr = 'remove-warn'
+autodoc_typehints = 'description'
+
+# sphinx-autoapi configuration
+autoapi_dirs = ['../../lagent']
+autoapi_options = [
+ 'members',
+ 'undoc-members',
+ 'show-inheritance',
+ 'show-module-summary',
+]
+autoapi_ignore = ['*migrations*', '*command.py', '*cli.py']
+autoapi_template_dir = '_templates/autoapi'
+autoapi_add_toctree_entry = False
+
+# Add any paths that contain templates here, relative to this directory.
+templates_path = ['_templates']
+
+# List of patterns, relative to source directory, that match files and
+# directories to ignore when looking for source files.
+# This pattern also affects html_static_path and html_extra_path.
+exclude_patterns = []
+
+# -- Options for HTML output -------------------------------------------------
+
+# The theme to use for HTML and HTML Help pages. See the documentation for
+# a list of builtin themes.
+#
+html_theme = 'sphinx_rtd_theme'
+html_theme_options = {
+ 'navigation_depth': 3,
+ 'titles_only': False,
+ 'style_nav_header_background': '#4fabab',
+}
+html_context = {
+ 'display_github': True,
+ 'github_host': 'github.com',
+ 'github_user': 'InternLM',
+ 'github_repo': 'lagent',
+ 'github_version': 'main',
+ 'conf_py_path': '/docs/zh_cn/',
+}
+html_title = 'Lagent'
+html_logo = '../imgs/lagent_logo.png'
+html_favicon = '../imgs/lagent_icon.png'
+
+master_doc = 'index'
+
+# Add any paths that contain custom static files (such as style sheets) here,
+# relative to this directory. They are copied after the builtin static files,
+# so a file named 'default.css' will overwrite the builtin 'default.css'.
+html_static_path = ['_static']
+
+
+def custom_skip(app, what, name, obj, skip, options):
+ if what in ['data', 'function', 'class'] and re.search('logger', name):
+ skip = True
+ return skip
+
+
+def setup(sphinx):
+ sphinx.connect('autoapi-skip-member', custom_skip)
diff --git a/docs/zh_cn/cp_origin_docs.sh b/docs/zh_cn/cp_origin_docs.sh
new file mode 100755
index 0000000000000000000000000000000000000000..1e728323684a0aad1571eb392871d6c5de6644fc
--- /dev/null
+++ b/docs/zh_cn/cp_origin_docs.sh
@@ -0,0 +1,9 @@
+#!/usr/bin/env bash
+
+# Copy *.md files from docs/ if it doesn't have a Chinese translation
+
+for filename in $(find ../en/ -name '*.md' -printf "%P\n");
+do
+ mkdir -p $(dirname $filename)
+ cp -n ../en/$filename ./$filename
+done
diff --git a/docs/zh_cn/docutils.conf b/docs/zh_cn/docutils.conf
new file mode 100644
index 0000000000000000000000000000000000000000..0c00c84688701117f231fd0c8ec295fb747b7d8f
--- /dev/null
+++ b/docs/zh_cn/docutils.conf
@@ -0,0 +1,2 @@
+[html writers]
+table_style: colwidths-auto
diff --git a/docs/zh_cn/get_started/install.md b/docs/zh_cn/get_started/install.md
new file mode 100644
index 0000000000000000000000000000000000000000..2e844f907a1330391cb0464bbe0b84339cca6556
--- /dev/null
+++ b/docs/zh_cn/get_started/install.md
@@ -0,0 +1,19 @@
+# 安装方式
+
+## pip安装
+
+推荐使用 pip 安装
+
+```bash
+pip install lagent
+```
+
+## 源码安装
+
+如需修改部分功能,可以从源码构建 Lagent
+
+```bash
+git clone https://github.com/InternLM/lagent.git
+cd lagent
+pip install -e .
+```
diff --git a/docs/zh_cn/index.rst b/docs/zh_cn/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..c62bff684d8397e83946b731fb83457ee72c7dd9
--- /dev/null
+++ b/docs/zh_cn/index.rst
@@ -0,0 +1,39 @@
+欢迎来到 Lagent 的中文文档!
+=======================================
+
+您可以在页面左下角切换中英文文档。
+
+.. toctree::
+ :maxdepth: 2
+ :caption: 新手入门
+
+ get_started/install.md
+
+.. toctree::
+ :maxdepth: 2
+ :caption: 教程
+
+ tutorials/action.md
+
+.. toctree::
+ :caption: 切换语言
+
+ switch_language.md
+
+.. toctree::
+ :maxdepth: 1
+ :caption: API 参考
+
+ autoapi/lagent/actions/index
+ autoapi/lagent/agents/index
+ autoapi/lagent/llms/index
+ autoapi/lagent/utils/index
+ autoapi/lagent/schema/index
+ autoapi/lagent/version/index
+
+
+导引
+==================
+
+* :ref:`genindex`
+* :ref:`search`
diff --git a/docs/zh_cn/make.bat b/docs/zh_cn/make.bat
new file mode 100644
index 0000000000000000000000000000000000000000..8a3a0e25b49a52ade52c4f69ddeb0bc3d12527ff
--- /dev/null
+++ b/docs/zh_cn/make.bat
@@ -0,0 +1,36 @@
+@ECHO OFF
+
+pushd %~dp0
+
+REM Command file for Sphinx documentation
+
+if "%SPHINXBUILD%" == "" (
+ set SPHINXBUILD=sphinx-build
+)
+set SOURCEDIR=.
+set BUILDDIR=_build
+
+if "%1" == "" goto help
+
+%SPHINXBUILD% >NUL 2>NUL
+if errorlevel 9009 (
+ echo.
+ echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
+ echo.installed, then set the SPHINXBUILD environment variable to point
+ echo.to the full path of the 'sphinx-build' executable. Alternatively you
+ echo.may add the Sphinx directory to PATH.
+ echo.
+ echo.If you don't have Sphinx installed, grab it from
+ echo.http://sphinx-doc.org/
+ exit /b 1
+)
+
+
+%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+goto end
+
+:help
+%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
+
+:end
+popd
diff --git a/docs/zh_cn/switch_language.md b/docs/zh_cn/switch_language.md
new file mode 100644
index 0000000000000000000000000000000000000000..950b4f0e74e09858eb3d627b8694e039eaa95603
--- /dev/null
+++ b/docs/zh_cn/switch_language.md
@@ -0,0 +1,3 @@
+## English
+
+## 简体中文
diff --git a/docs/zh_cn/tutorials/action.md b/docs/zh_cn/tutorials/action.md
new file mode 100644
index 0000000000000000000000000000000000000000..a686aeb82af7839472aad73cbdfa6a3d78a5ef54
--- /dev/null
+++ b/docs/zh_cn/tutorials/action.md
@@ -0,0 +1,398 @@
+# 动作
+
+动作,也被称为工具,提供了一套LLM驱动的智能体用来与真实世界交互并执行复杂任务的函数。
+
+## 基本概念
+
+### 工具 & 工具包
+
+有两种类型的工具:
+
+- 简单工具: 只提供一个API接口供调用。
+- 工具包: 实现多个API接口,承担不同的子任务。
+
+### 工具描述
+
+在Lagent中,工具描述是一个刻画工具调用方式的字典,能够被LLM观察并用于决策。
+
+对于简单工具,描述可按如下格式声明:
+
+```python
+TOOL_DESCRIPTION = {
+ 'name': 'bold', # 工具名称
+ 'description': 'a function used to make text bold', # 介绍工具的功能
+ 'parameters': [ # 这个工具所需要的参数列表
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text'], # 指定必需的参数名
+}
+```
+
+在某些情况下,可能还包含 `return_data`,`parameter_description` 字段,分别描述返回内容及参数传递格式。
+
+```{attention}
+`parameter_description` 通常被动作的解析器自动插入到工具描述中,这部分将在[接口设计](#id6)中进行介绍。
+```
+
+对于工具包,描述非常相似,但嵌套了子方法
+
+```python
+TOOL_DESCRIPTION = {
+ 'name': 'PhraseEmphasis', # 工具包的名字
+ 'description': 'a toolkit which provides different styles of text emphasis', # 介绍工具包的功能
+ 'api_list': [
+ {
+ 'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text']
+ },
+ {
+ 'name': 'italic',
+ 'description': 'make text italic',
+ 'parameters': [
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text']
+ }
+ ]
+}
+```
+
+## 将函数转换为工具
+
+对于已定义好的函数,无需人工添加额外的描述。在 Lagent 中,我们提供了一个修饰器 `tool_api`,它可以通过自动解析函数的类型提示和文档字符串来生成描述字典,并将其绑定到属性 `api_description`。
+
+```python
+from lagent import tool_api
+
+@tool_api
+def bold(text: str) -> str:
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: bold text
+ """
+ return '**' + text + '**'
+
+
+bold.api_description
+```
+
+```python
+{'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text']}
+```
+
+一旦启用 `returns_named_value`,您应当声明返回值的名称,这将被处理成一个新的字段 `return_data`:
+
+```python
+@tool_api(returns_named_value=True)
+def bold(text: str) -> str:
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ bold_text (str): bold text
+ """
+ return '**' + text + '**'
+
+bold.api_description
+```
+
+```python
+{'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text'],
+ 'return_data': [{'name': 'bold_text',
+ 'description': 'bold text',
+ 'type': 'STRING'}]}
+```
+
+有时工具可能返回一个 `dict` 或 `tuple`,如果你想在 `return_data` 中详细说明每个成员的含义而不是把它们当作一个整体,设置 `explode_return=True` 并在文档字符串的 Returns 部分中罗列它们。
+
+```python
+@tool_api(explode_return=True)
+def list_args(a: str, b: int, c: float = 0.0) -> dict:
+ """Return arguments in dict format
+
+ Args:
+ a (str): a
+ b (int): b
+ c (float): c
+
+ Returns:
+ dict: input arguments
+ - a (str): a
+ - b (int): b
+ - c: c
+ """
+ return {'a': a, 'b': b, 'c': c}
+```
+
+```python
+{'name': 'list_args',
+ 'description': 'Return arguments in dict format',
+ 'parameters': [{'name': 'a', 'type': 'STRING', 'description': 'a'},
+ {'name': 'b', 'type': 'NUMBER', 'description': 'b'},
+ {'name': 'c', 'type': 'FLOAT', 'description': 'c'}],
+ 'required': ['a', 'b'],
+ 'return_data': [{'name': 'a', 'description': 'a', 'type': 'STRING'},
+ {'name': 'b', 'description': 'b', 'type': 'NUMBER'},
+ {'name': 'c', 'description': 'c'}]}
+```
+
+```{warning}
+目前仅支持 Google 格式的 Python 文档字符串。
+```
+
+## 接口设计
+
+`BaseAction(description=None, parser=JsonParser, enable=True)` 是所有动作应该继承的基类,它接收三个初始化参数:
+
+- **description**:一个工具描述的字典,用于设置实例属性 `description`。通常不需要显式地传递这个参数,因为 `BaseAction` 的元类将查找被 `tool_api` 装饰的方法,并组装它们的 `api_description` 构造一个类属性 `__tool_description__`,如果实例化时 `description` 为空,那么该实例属性将置为 `__tool_description__`。
+
+- **parser**:`BaseParser` 类,用于实例化一个动作解析器校验 `description` 所描述的工具的参数。例如,`JsonParser` 会要求模型在调用工具时传入一个 JSON 格式字符串或者 Python 字典,为了让 LLM 感知到该指令,它会在 `description` 中插入一个 `parameter_description` 字段。
+
+ ```python
+ from lagent import BaseAction
+
+ action = BaseAction(
+ {
+ 'name': 'bold',
+ 'description': 'a function used to make text bold',
+ 'parameters': [
+ {
+ 'name': 'text', 'type': 'STRING', 'description': 'input content'
+ }
+ ],
+ 'required': ['text']
+ }
+ )
+ action.description
+ ```
+
+ ```python
+ {'name': 'bold',
+ 'description': 'a function used to make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input content'}],
+ 'required': ['text'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}
+ ```
+
+- **enable**: 指明该动作是否生效。
+
+### 自定义动作
+
+一个简单工具必须实现 `run` 方法,而工具包则应当避免将各子API名称定义为该保留字段。
+
+```{tip}
+对于非工具包的 Action,`run` 允许不被 `tool_api` 装饰,除非你想提示返回信息。
+```
+
+```python
+class Bold(BaseAction):
+
+ def run(self, text: str):
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: bold text
+ """
+ return '**' + text + '**'
+
+class PhraseEmphasis(BaseAction):
+ """a toolkit which provides different styles of text emphasis"""
+
+ @tool_api
+ def bold(self, text):
+ """make text bold
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: bold text
+ """
+ return '**' + text + '**'
+
+ @tool_api
+ def italic(self, text):
+ """make text italic
+
+ Args:
+ text (str): input text
+
+ Returns:
+ str: italic text
+ """
+ return '*' + text + '*'
+
+# 查看默认工具描述
+# Bold.__tool_description__, PhraseEmphasis.__tool_description__
+```
+
+### 自动注册
+
+任何 `BaseAction` 的子类都会自动被注册。你可以使用 `list_tools()` 和 `get_tool()` 来查看所有工具类并通过工具名进行初始化。
+
+```python
+from lagent import list_tools, get_tool
+
+list_tools()
+```
+
+```python
+['BaseAction',
+ 'InvalidAction',
+ 'NoAction',
+ 'FinishAction',
+ 'ArxivSearch',
+ 'BINGMap',
+ 'GoogleScholar',
+ 'GoogleSearch',
+ 'IPythonInterpreter',
+ 'PPT',
+ 'PythonInterpreter',
+ 'Bold',
+ 'PhraseEmphasis']
+```
+
+创建一个 `PhraseEmphasis` 对象。
+
+```python
+action = get_tool('PhraseEmphasis')
+action.description
+```
+
+```python
+{'name': 'PhraseEmphasis',
+ 'description': 'a toolkit which provides different styles of text emphasis',
+ 'api_list': [{'name': 'bold',
+ 'description': 'make text bold',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
+ {'name': 'italic',
+ 'description': 'make text italic',
+ 'parameters': [{'name': 'text',
+ 'type': 'STRING',
+ 'description': 'input text'}],
+ 'required': ['text'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]}
+```
+
+## 工具调用
+
+### 执行工具
+
+`Action` 的 `__call__` 方法需要传入两个参数
+
+- `inputs`: 其类型与动作绑定的 `BaseParser` 相关,通常是由大语言模型生成的字符串。
+ - `JsonParser`: 允许传入 JSON 格式字符串或 Python 字典。
+ - `TupleParser`: 允许传入字面量为元组的字符串或 Python 元组。
+- `name`: 调用哪个 API,默认为 `run`。
+
+工具会返回一个封装了调用细节的 `ActionReturn` 对象。
+
+- `args`: 一个字典,表示该动作的入参。
+- `type`: 动作名称。
+- `result`: 以字典为成员的列表,每个字典包含两个键——'type' 和 'content',发生异常时该字段为 `None`。
+- `errmsg`: 错误信息,默认为 `None`。
+
+以下是一个例子:
+
+```python
+from lagent import IPythonInterpreter, TupleParser
+
+action1 = IPythonInterpreter()
+ret = action1('{"command": "import math;math.sqrt(100)"}')
+print(ret.result)
+ret = action1({'command': 'import math;math.sqrt(100)'})
+print(ret.result)
+
+action2 = IPythonInterpreter(parser=TupleParser)
+ret = action2('("import math;math.sqrt(100)", )')
+print(ret.result)
+ret = action2(('import math;math.sqrt(100)',))
+print(ret.result)
+```
+
+```python
+[{'type': 'text', 'content': '10.0'}]
+[{'type': 'text', 'content': '10.0'}]
+[{'type': 'text', 'content': '10.0'}]
+[{'type': 'text', 'content': '10.0'}]
+```
+
+### 动态触发
+
+Lagent 提供 `ActionExecutor` 接口管理多个工具,它会将工具包的 `api_list` 平展并将各 API 更名为 `{tool_name}.{api_name}`。
+
+```python
+from lagent import ActionExecutor, ArxivSearch, IPythonInterpreter
+
+executor = ActionExecutor(actions=[ArxivSearch(), IPythonInterpreter()])
+executor.get_actions_info() # 该结果会作为LLM系统提示词的一部分
+```
+
+```python
+[{'name': 'ArxivSearch.get_arxiv_article_information',
+ 'description': 'Run Arxiv search and get the article meta information.',
+ 'parameters': [{'name': 'query',
+ 'type': 'STRING',
+ 'description': 'the content of search query'}],
+ 'required': ['query'],
+ 'return_data': [{'name': 'content',
+ 'description': 'a list of 3 arxiv search papers',
+ 'type': 'STRING'}],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
+ {'name': 'IPythonInterpreter',
+ 'description': "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.",
+ 'parameters': [{'name': 'command',
+ 'type': 'STRING',
+ 'description': 'Python code'},
+ {'name': 'timeout',
+ 'type': 'NUMBER',
+ 'description': 'Upper bound of waiting time for Python script execution.'}],
+ 'required': ['command'],
+ 'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]
+```
+
+通过动作执行器来触发一个工具
+
+```python
+ret = executor('IPythonInterpreter', '{"command": "import math;math.sqrt(100)"}')
+ret.result
+```
+
+```python
+[{'type': 'text', 'content': '10.0'}]
+```
diff --git a/examples/.ipynb_checkpoints/agent_api_web_demo-checkpoint.py b/examples/.ipynb_checkpoints/agent_api_web_demo-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..4bece6cd0e92c9e4b7009ef55cac65ee6dc8c118
--- /dev/null
+++ b/examples/.ipynb_checkpoints/agent_api_web_demo-checkpoint.py
@@ -0,0 +1,196 @@
+import copy
+import os
+from typing import List
+import streamlit as st
+from lagent.actions import ArxivSearch, WeatherQuery
+from lagent.prompts.parsers import PluginParser
+from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
+from lagent.llms import GPTAPI
+
+class SessionState:
+ """管理会话状态的类。"""
+
+ def init_state(self):
+ """初始化会话状态变量。"""
+ st.session_state['assistant'] = [] # 助手消息历史
+ st.session_state['user'] = [] # 用户消息历史
+ # 初始化插件列表
+ action_list = [
+ ArxivSearch(),
+ WeatherQuery(),
+ ]
+ st.session_state['plugin_map'] = {action.name: action for action in action_list}
+ st.session_state['model_map'] = {} # 存储模型实例
+ st.session_state['model_selected'] = None # 当前选定模型
+ st.session_state['plugin_actions'] = set() # 当前激活插件
+ st.session_state['history'] = [] # 聊天历史
+ st.session_state['api_base'] = None # 初始化API base地址
+
+ def clear_state(self):
+ """清除当前会话状态。"""
+ st.session_state['assistant'] = []
+ st.session_state['user'] = []
+ st.session_state['model_selected'] = None
+
+
+class StreamlitUI:
+ """管理 Streamlit 界面的类。"""
+
+ def __init__(self, session_state: SessionState):
+ self.session_state = session_state
+ self.plugin_action = [] # 当前选定的插件
+ # 初始化提示词
+ self.meta_prompt = META_CN
+ self.plugin_prompt = PLUGIN_CN
+ self.init_streamlit()
+
+ def init_streamlit(self):
+ """初始化 Streamlit 的 UI 设置。"""
+ st.set_page_config(
+ layout='wide',
+ page_title='lagent-web',
+ page_icon='./docs/imgs/lagent_icon.png'
+ )
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
+
+ def setup_sidebar(self):
+ """设置侧边栏,选择模型和插件。"""
+ # 模型名称和 API Base 输入框
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
+
+ # ================================== 硅基流动的API ==================================
+ # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
+ # api_base = st.sidebar.text_input(
+ # 'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
+ # )
+ # ================================== 浦语官方的API ==================================
+ api_base = st.sidebar.text_input(
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
+ )
+ # ==================================================================================
+ # 插件选择
+ plugin_name = st.sidebar.multiselect(
+ '插件选择',
+ options=list(st.session_state['plugin_map'].keys()),
+ default=[],
+ )
+
+ # 根据选择的插件生成插件操作列表
+ self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]
+
+ # 动态生成插件提示
+ if self.plugin_action:
+ self.plugin_prompt = get_plugin_prompt(self.plugin_action)
+
+ # 清空对话按钮
+ if st.sidebar.button('清空对话', key='clear'):
+ self.session_state.clear_state()
+
+ return model_name, api_base, self.plugin_action
+
+ def initialize_chatbot(self, model_name, api_base, plugin_action):
+ """初始化 GPTAPI 实例作为 chatbot。"""
+ token = os.getenv("token")
+ if not token:
+ st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
+ st.stop() # 停止运行应用
+
+ # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
+ meta_prompt = [
+ {"role": "system", "content": self.meta_prompt, "api_role": "system"},
+ {"role": "user", "content": "", "api_role": "user"},
+ {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
+ {"role": "environment", "content": "", "api_role": "environment"}
+ ]
+
+ api_model = GPTAPI(
+ model_type=model_name,
+ api_base=api_base,
+ key=token, # 从环境变量中获取授权令牌
+ meta_template=meta_prompt,
+ max_new_tokens=512,
+ temperature=0.8,
+ top_p=0.9
+ )
+ return api_model
+
+ def render_user(self, prompt: str):
+ """渲染用户输入内容。"""
+ with st.chat_message('user'):
+ st.markdown(prompt)
+
+ def render_assistant(self, agent_return):
+ """渲染助手响应内容。"""
+ with st.chat_message('assistant'):
+ content = getattr(agent_return, "content", str(agent_return))
+ st.markdown(content if isinstance(content, str) else str(content))
+
+
+def main():
+ """主函数,运行 Streamlit 应用。"""
+ if 'ui' not in st.session_state:
+ session_state = SessionState()
+ session_state.init_state()
+ st.session_state['ui'] = StreamlitUI(session_state)
+ else:
+ st.set_page_config(
+ layout='wide',
+ page_title='lagent-web',
+ page_icon='./docs/imgs/lagent_icon.png'
+ )
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
+
+ # 设置侧边栏并获取模型和插件信息
+ model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
+ plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]
+
+ if (
+ 'chatbot' not in st.session_state or
+ model_name != st.session_state['chatbot'].model_type or
+ 'last_plugin_action' not in st.session_state or
+ plugin_action != st.session_state['last_plugin_action'] or
+ api_base != st.session_state['api_base']
+ ):
+ # 更新 Chatbot
+ st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
+ st.session_state['last_plugin_action'] = plugin_action # 更新插件状态
+ st.session_state['api_base'] = api_base # 更新 API Base 地址
+
+ # 初始化 AgentForInternLM
+ st.session_state['agent'] = AgentForInternLM(
+ llm=st.session_state['chatbot'],
+ plugins=plugins,
+ output_format=dict(
+ type=PluginParser,
+ template=PLUGIN_CN,
+ prompt=get_plugin_prompt(plugin_action)
+ )
+ )
+ # 清空对话历史
+ st.session_state['session_history'] = []
+
+ if 'agent' not in st.session_state:
+ st.session_state['agent'] = None
+
+ agent = st.session_state['agent']
+ for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
+ st.session_state['ui'].render_user(prompt)
+ st.session_state['ui'].render_assistant(agent_return)
+
+ # 处理用户输入
+ if user_input := st.chat_input(''):
+ st.session_state['ui'].render_user(user_input)
+
+ # 调用模型时确保侧边栏的系统提示词和插件提示词生效
+ res = agent(user_input, session_id=0)
+ st.session_state['ui'].render_assistant(res)
+
+ # 更新会话状态
+ st.session_state['user'].append(user_input)
+ st.session_state['assistant'].append(copy.deepcopy(res))
+
+ st.session_state['last_status'] = None
+
+
+if __name__ == '__main__':
+ main()
diff --git a/examples/.ipynb_checkpoints/multi_agents_api_web_demo-checkpoint.py b/examples/.ipynb_checkpoints/multi_agents_api_web_demo-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..c30f0b4280c5179778a89fd3ac3b46441028fdcd
--- /dev/null
+++ b/examples/.ipynb_checkpoints/multi_agents_api_web_demo-checkpoint.py
@@ -0,0 +1,198 @@
+import os
+import asyncio
+import json
+import re
+import requests
+import streamlit as st
+
+from lagent.agents import Agent
+from lagent.prompts.parsers import PluginParser
+from lagent.agents.stream import PLUGIN_CN, get_plugin_prompt
+from lagent.schema import AgentMessage
+from lagent.actions import ArxivSearch
+from lagent.hooks import Hook
+from lagent.llms import GPTAPI
+
+YOUR_TOKEN_HERE = os.getenv("token")
+if not YOUR_TOKEN_HERE:
+ raise EnvironmentError("未找到环境变量 'token',请设置后再运行程序。")
+
+# Hook类,用于对消息添加前缀
+class PrefixedMessageHook(Hook):
+ def __init__(self, prefix, senders=None):
+ """
+ 初始化Hook
+ :param prefix: 消息前缀
+ :param senders: 指定发送者列表
+ """
+ self.prefix = prefix
+ self.senders = senders or []
+
+ def before_agent(self, agent, messages, session_id):
+ """
+ 在代理处理消息前修改消息内容
+ :param agent: 当前代理
+ :param messages: 消息列表
+ :param session_id: 会话ID
+ """
+ for message in messages:
+ if message.sender in self.senders:
+ message.content = self.prefix + message.content
+
+class AsyncBlogger:
+ """博客生成类,整合写作者和批评者。"""
+
+ def __init__(self, model_type, api_base, writer_prompt, critic_prompt, critic_prefix='', max_turn=2):
+ """
+ 初始化博客生成器
+ :param model_type: 模型类型
+ :param api_base: API 基地址
+ :param writer_prompt: 写作者提示词
+ :param critic_prompt: 批评者提示词
+ :param critic_prefix: 批评消息前缀
+ :param max_turn: 最大轮次
+ """
+ self.model_type = model_type
+ self.api_base = api_base
+ self.llm = GPTAPI(
+ model_type=model_type,
+ api_base=api_base,
+ key=YOUR_TOKEN_HERE,
+ max_new_tokens=4096,
+ )
+ self.plugins = [dict(type='lagent.actions.ArxivSearch')]
+ self.writer = Agent(
+ self.llm,
+ writer_prompt,
+ name='写作者',
+ output_format=dict(
+ type=PluginParser,
+ template=PLUGIN_CN,
+ prompt=get_plugin_prompt(self.plugins)
+ )
+ )
+ self.critic = Agent(
+ self.llm,
+ critic_prompt,
+ name='批评者',
+ hooks=[PrefixedMessageHook(critic_prefix, ['写作者'])]
+ )
+ self.max_turn = max_turn
+
+ async def forward(self, message: AgentMessage, update_placeholder):
+ """
+ 执行多阶段博客生成流程
+ :param message: 初始消息
+ :param update_placeholder: Streamlit占位符
+ :return: 最终优化的博客内容
+ """
+ step1_placeholder = update_placeholder.container()
+ step2_placeholder = update_placeholder.container()
+ step3_placeholder = update_placeholder.container()
+
+ # 第一步:生成初始内容
+ step1_placeholder.markdown("**Step 1: 生成初始内容...**")
+ message = self.writer(message)
+ if message.content:
+ step1_placeholder.markdown(f"**生成的初始内容**:\n\n{message.content}")
+ else:
+ step1_placeholder.markdown("**生成的初始内容为空,请检查生成逻辑。**")
+
+ # 第二步:批评者提供反馈
+ step2_placeholder.markdown("**Step 2: 批评者正在提供反馈和文献推荐...**")
+ message = self.critic(message)
+ if message.content:
+ # 解析批评者反馈
+ suggestions = re.search(r"1\. 批评建议:\n(.*?)2\. 推荐的关键词:", message.content, re.S)
+ keywords = re.search(r"2\. 推荐的关键词:\n- (.*)", message.content)
+ feedback = suggestions.group(1).strip() if suggestions else "未提供批评建议"
+ keywords = keywords.group(1).strip() if keywords else "未提供关键词"
+
+ # Arxiv 文献查询
+ arxiv_search = ArxivSearch()
+ arxiv_results = arxiv_search.get_arxiv_article_information(keywords)
+
+ # 显示批评内容和文献推荐
+ message.content = f"**批评建议**:\n{feedback}\n\n**推荐的文献**:\n{arxiv_results}"
+ step2_placeholder.markdown(f"**批评和文献推荐**:\n\n{message.content}")
+ else:
+ step2_placeholder.markdown("**批评内容为空,请检查批评逻辑。**")
+
+ # 第三步:写作者根据反馈优化内容
+ step3_placeholder.markdown("**Step 3: 根据反馈改进内容...**")
+ improvement_prompt = AgentMessage(
+ sender="critic",
+ content=(
+ f"根据以下批评建议和推荐文献对内容进行改进:\n\n"
+ f"批评建议:\n{feedback}\n\n"
+ f"推荐文献:\n{arxiv_results}\n\n"
+ f"请优化初始内容,使其更加清晰、丰富,并符合专业水准。"
+ ),
+ )
+ message = self.writer(improvement_prompt)
+ if message.content:
+ step3_placeholder.markdown(f"**最终优化的博客内容**:\n\n{message.content}")
+ else:
+ step3_placeholder.markdown("**最终优化的博客内容为空,请检查生成逻辑。**")
+
+ return message
+
+def setup_sidebar():
+ """设置侧边栏,选择模型。"""
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
+ api_base = st.sidebar.text_input(
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
+ )
+
+ return model_name, api_base
+
+def main():
+ """
+ 主函数:构建Streamlit界面并处理用户交互
+ """
+ st.set_page_config(layout='wide', page_title='Lagent Web Demo', page_icon='🤖')
+ st.title("多代理博客优化助手")
+
+ model_type, api_base = setup_sidebar()
+ topic = st.text_input('输入一个话题:', 'Self-Supervised Learning')
+ generate_button = st.button('生成博客内容')
+
+ if (
+ 'blogger' not in st.session_state or
+ st.session_state['model_type'] != model_type or
+ st.session_state['api_base'] != api_base
+ ):
+ st.session_state['blogger'] = AsyncBlogger(
+ model_type=model_type,
+ api_base=api_base,
+ writer_prompt="你是一位优秀的AI内容写作者,请撰写一篇有吸引力且信息丰富的博客内容。",
+ critic_prompt="""
+ 作为一位严谨的批评者,请给出建设性的批评和改进建议,并基于相关主题使用已有的工具推荐一些参考文献,推荐的关键词应该是英语形式,简洁且切题。
+ 请按照以下格式提供反馈:
+ 1. 批评建议:
+ - (具体建议)
+ 2. 推荐的关键词:
+ - (关键词1, 关键词2, ...)
+ """,
+ critic_prefix="请批评以下内容,并提供改进建议:\n\n"
+ )
+ st.session_state['model_type'] = model_type
+ st.session_state['api_base'] = api_base
+
+ if generate_button:
+ update_placeholder = st.empty()
+
+ async def run_async_blogger():
+ message = AgentMessage(
+ sender='user',
+ content=f"请撰写一篇关于{topic}的博客文章,要求表达专业,生动有趣,并且易于理解。"
+ )
+ result = await st.session_state['blogger'].forward(message, update_placeholder)
+ return result
+
+ loop = asyncio.new_event_loop()
+ asyncio.set_event_loop(loop)
+ loop.run_until_complete(run_async_blogger())
+
+if __name__ == '__main__':
+ main()
\ No newline at end of file
diff --git a/examples/agent_api_web_demo.py b/examples/agent_api_web_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..4bece6cd0e92c9e4b7009ef55cac65ee6dc8c118
--- /dev/null
+++ b/examples/agent_api_web_demo.py
@@ -0,0 +1,196 @@
+import copy
+import os
+from typing import List
+import streamlit as st
+from lagent.actions import ArxivSearch, WeatherQuery
+from lagent.prompts.parsers import PluginParser
+from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
+from lagent.llms import GPTAPI
+
+class SessionState:
+ """管理会话状态的类。"""
+
+ def init_state(self):
+ """初始化会话状态变量。"""
+ st.session_state['assistant'] = [] # 助手消息历史
+ st.session_state['user'] = [] # 用户消息历史
+ # 初始化插件列表
+ action_list = [
+ ArxivSearch(),
+ WeatherQuery(),
+ ]
+ st.session_state['plugin_map'] = {action.name: action for action in action_list}
+ st.session_state['model_map'] = {} # 存储模型实例
+ st.session_state['model_selected'] = None # 当前选定模型
+ st.session_state['plugin_actions'] = set() # 当前激活插件
+ st.session_state['history'] = [] # 聊天历史
+ st.session_state['api_base'] = None # 初始化API base地址
+
+ def clear_state(self):
+ """清除当前会话状态。"""
+ st.session_state['assistant'] = []
+ st.session_state['user'] = []
+ st.session_state['model_selected'] = None
+
+
+class StreamlitUI:
+ """管理 Streamlit 界面的类。"""
+
+ def __init__(self, session_state: SessionState):
+ self.session_state = session_state
+ self.plugin_action = [] # 当前选定的插件
+ # 初始化提示词
+ self.meta_prompt = META_CN
+ self.plugin_prompt = PLUGIN_CN
+ self.init_streamlit()
+
+ def init_streamlit(self):
+ """初始化 Streamlit 的 UI 设置。"""
+ st.set_page_config(
+ layout='wide',
+ page_title='lagent-web',
+ page_icon='./docs/imgs/lagent_icon.png'
+ )
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
+
+ def setup_sidebar(self):
+ """设置侧边栏,选择模型和插件。"""
+ # 模型名称和 API Base 输入框
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
+
+ # ================================== 硅基流动的API ==================================
+ # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
+ # api_base = st.sidebar.text_input(
+ # 'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
+ # )
+ # ================================== 浦语官方的API ==================================
+ api_base = st.sidebar.text_input(
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
+ )
+ # ==================================================================================
+ # 插件选择
+ plugin_name = st.sidebar.multiselect(
+ '插件选择',
+ options=list(st.session_state['plugin_map'].keys()),
+ default=[],
+ )
+
+ # 根据选择的插件生成插件操作列表
+ self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]
+
+ # 动态生成插件提示
+ if self.plugin_action:
+ self.plugin_prompt = get_plugin_prompt(self.plugin_action)
+
+ # 清空对话按钮
+ if st.sidebar.button('清空对话', key='clear'):
+ self.session_state.clear_state()
+
+ return model_name, api_base, self.plugin_action
+
+ def initialize_chatbot(self, model_name, api_base, plugin_action):
+ """初始化 GPTAPI 实例作为 chatbot。"""
+ token = os.getenv("token")
+ if not token:
+ st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
+ st.stop() # 停止运行应用
+
+ # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
+ meta_prompt = [
+ {"role": "system", "content": self.meta_prompt, "api_role": "system"},
+ {"role": "user", "content": "", "api_role": "user"},
+ {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
+ {"role": "environment", "content": "", "api_role": "environment"}
+ ]
+
+ api_model = GPTAPI(
+ model_type=model_name,
+ api_base=api_base,
+ key=token, # 从环境变量中获取授权令牌
+ meta_template=meta_prompt,
+ max_new_tokens=512,
+ temperature=0.8,
+ top_p=0.9
+ )
+ return api_model
+
+ def render_user(self, prompt: str):
+ """渲染用户输入内容。"""
+ with st.chat_message('user'):
+ st.markdown(prompt)
+
+ def render_assistant(self, agent_return):
+ """渲染助手响应内容。"""
+ with st.chat_message('assistant'):
+ content = getattr(agent_return, "content", str(agent_return))
+ st.markdown(content if isinstance(content, str) else str(content))
+
+
+def main():
+ """主函数,运行 Streamlit 应用。"""
+ if 'ui' not in st.session_state:
+ session_state = SessionState()
+ session_state.init_state()
+ st.session_state['ui'] = StreamlitUI(session_state)
+ else:
+ st.set_page_config(
+ layout='wide',
+ page_title='lagent-web',
+ page_icon='./docs/imgs/lagent_icon.png'
+ )
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
+
+ # 设置侧边栏并获取模型和插件信息
+ model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
+ plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]
+
+ if (
+ 'chatbot' not in st.session_state or
+ model_name != st.session_state['chatbot'].model_type or
+ 'last_plugin_action' not in st.session_state or
+ plugin_action != st.session_state['last_plugin_action'] or
+ api_base != st.session_state['api_base']
+ ):
+ # 更新 Chatbot
+ st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
+ st.session_state['last_plugin_action'] = plugin_action # 更新插件状态
+ st.session_state['api_base'] = api_base # 更新 API Base 地址
+
+ # 初始化 AgentForInternLM
+ st.session_state['agent'] = AgentForInternLM(
+ llm=st.session_state['chatbot'],
+ plugins=plugins,
+ output_format=dict(
+ type=PluginParser,
+ template=PLUGIN_CN,
+ prompt=get_plugin_prompt(plugin_action)
+ )
+ )
+ # 清空对话历史
+ st.session_state['session_history'] = []
+
+ if 'agent' not in st.session_state:
+ st.session_state['agent'] = None
+
+ agent = st.session_state['agent']
+ for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
+ st.session_state['ui'].render_user(prompt)
+ st.session_state['ui'].render_assistant(agent_return)
+
+ # 处理用户输入
+ if user_input := st.chat_input(''):
+ st.session_state['ui'].render_user(user_input)
+
+ # 调用模型时确保侧边栏的系统提示词和插件提示词生效
+ res = agent(user_input, session_id=0)
+ st.session_state['ui'].render_assistant(res)
+
+ # 更新会话状态
+ st.session_state['user'].append(user_input)
+ st.session_state['assistant'].append(copy.deepcopy(res))
+
+ st.session_state['last_status'] = None
+
+
+if __name__ == '__main__':
+ main()
diff --git a/examples/model_cli_demo.py b/examples/model_cli_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..0cdd60fe6f8304ba85641140998cc7b09022817b
--- /dev/null
+++ b/examples/model_cli_demo.py
@@ -0,0 +1,63 @@
+from argparse import ArgumentParser
+
+from lagent.llms import HFTransformer
+from lagent.llms.meta_template import INTERNLM2_META as META
+
+
+def parse_args():
+ parser = ArgumentParser(description='chatbot')
+ parser.add_argument(
+ '--path',
+ type=str,
+ default='internlm/internlm2-chat-20b',
+ help='The path to the model')
+ parser.add_argument(
+ '--mode',
+ type=str,
+ default='chat',
+ help='Completion through chat or generate')
+ args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
+ # Initialize the HFTransformer-based Language Model (llm)
+ model = HFTransformer(
+ path=args.path,
+ meta_template=META,
+ max_new_tokens=1024,
+ top_p=0.8,
+ top_k=None,
+ temperature=0.1,
+ repetition_penalty=1.0,
+ stop_words=['<|im_end|>'])
+
+ def input_prompt():
+ print('\ndouble enter to end input >>> ', end='', flush=True)
+ sentinel = '' # ends when this string is seen
+ return '\n'.join(iter(input, sentinel))
+
+ history = []
+ while True:
+ try:
+ prompt = input_prompt()
+ except UnicodeDecodeError:
+ print('UnicodeDecodeError')
+ continue
+ if prompt == 'exit':
+ exit(0)
+ history.append(dict(role='user', content=prompt))
+ if args.mode == 'generate':
+ history = [dict(role='user', content=prompt)]
+ print('\nInternLm2:', end='')
+ current_length = 0
+ for status, response, _ in model.stream_chat(history):
+ print(response[current_length:], end='', flush=True)
+ current_length = len(response)
+ history.append(dict(role='assistant', content=response))
+ print('')
+
+
+if __name__ == '__main__':
+ main()
diff --git a/examples/multi_agents_api_web_demo.py b/examples/multi_agents_api_web_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..c30f0b4280c5179778a89fd3ac3b46441028fdcd
--- /dev/null
+++ b/examples/multi_agents_api_web_demo.py
@@ -0,0 +1,198 @@
+import os
+import asyncio
+import json
+import re
+import requests
+import streamlit as st
+
+from lagent.agents import Agent
+from lagent.prompts.parsers import PluginParser
+from lagent.agents.stream import PLUGIN_CN, get_plugin_prompt
+from lagent.schema import AgentMessage
+from lagent.actions import ArxivSearch
+from lagent.hooks import Hook
+from lagent.llms import GPTAPI
+
+YOUR_TOKEN_HERE = os.getenv("token")
+if not YOUR_TOKEN_HERE:
+ raise EnvironmentError("未找到环境变量 'token',请设置后再运行程序。")
+
+# Hook类,用于对消息添加前缀
+class PrefixedMessageHook(Hook):
+ def __init__(self, prefix, senders=None):
+ """
+ 初始化Hook
+ :param prefix: 消息前缀
+ :param senders: 指定发送者列表
+ """
+ self.prefix = prefix
+ self.senders = senders or []
+
+ def before_agent(self, agent, messages, session_id):
+ """
+ 在代理处理消息前修改消息内容
+ :param agent: 当前代理
+ :param messages: 消息列表
+ :param session_id: 会话ID
+ """
+ for message in messages:
+ if message.sender in self.senders:
+ message.content = self.prefix + message.content
+
+class AsyncBlogger:
+ """博客生成类,整合写作者和批评者。"""
+
+ def __init__(self, model_type, api_base, writer_prompt, critic_prompt, critic_prefix='', max_turn=2):
+ """
+ 初始化博客生成器
+ :param model_type: 模型类型
+ :param api_base: API 基地址
+ :param writer_prompt: 写作者提示词
+ :param critic_prompt: 批评者提示词
+ :param critic_prefix: 批评消息前缀
+ :param max_turn: 最大轮次
+ """
+ self.model_type = model_type
+ self.api_base = api_base
+ self.llm = GPTAPI(
+ model_type=model_type,
+ api_base=api_base,
+ key=YOUR_TOKEN_HERE,
+ max_new_tokens=4096,
+ )
+ self.plugins = [dict(type='lagent.actions.ArxivSearch')]
+ self.writer = Agent(
+ self.llm,
+ writer_prompt,
+ name='写作者',
+ output_format=dict(
+ type=PluginParser,
+ template=PLUGIN_CN,
+ prompt=get_plugin_prompt(self.plugins)
+ )
+ )
+ self.critic = Agent(
+ self.llm,
+ critic_prompt,
+ name='批评者',
+ hooks=[PrefixedMessageHook(critic_prefix, ['写作者'])]
+ )
+ self.max_turn = max_turn
+
+ async def forward(self, message: AgentMessage, update_placeholder):
+ """
+ 执行多阶段博客生成流程
+ :param message: 初始消息
+ :param update_placeholder: Streamlit占位符
+ :return: 最终优化的博客内容
+ """
+ step1_placeholder = update_placeholder.container()
+ step2_placeholder = update_placeholder.container()
+ step3_placeholder = update_placeholder.container()
+
+ # 第一步:生成初始内容
+ step1_placeholder.markdown("**Step 1: 生成初始内容...**")
+ message = self.writer(message)
+ if message.content:
+ step1_placeholder.markdown(f"**生成的初始内容**:\n\n{message.content}")
+ else:
+ step1_placeholder.markdown("**生成的初始内容为空,请检查生成逻辑。**")
+
+ # 第二步:批评者提供反馈
+ step2_placeholder.markdown("**Step 2: 批评者正在提供反馈和文献推荐...**")
+ message = self.critic(message)
+ if message.content:
+ # 解析批评者反馈
+ suggestions = re.search(r"1\. 批评建议:\n(.*?)2\. 推荐的关键词:", message.content, re.S)
+ keywords = re.search(r"2\. 推荐的关键词:\n- (.*)", message.content)
+ feedback = suggestions.group(1).strip() if suggestions else "未提供批评建议"
+ keywords = keywords.group(1).strip() if keywords else "未提供关键词"
+
+ # Arxiv 文献查询
+ arxiv_search = ArxivSearch()
+ arxiv_results = arxiv_search.get_arxiv_article_information(keywords)
+
+ # 显示批评内容和文献推荐
+ message.content = f"**批评建议**:\n{feedback}\n\n**推荐的文献**:\n{arxiv_results}"
+ step2_placeholder.markdown(f"**批评和文献推荐**:\n\n{message.content}")
+ else:
+ step2_placeholder.markdown("**批评内容为空,请检查批评逻辑。**")
+
+ # 第三步:写作者根据反馈优化内容
+ step3_placeholder.markdown("**Step 3: 根据反馈改进内容...**")
+ improvement_prompt = AgentMessage(
+ sender="critic",
+ content=(
+ f"根据以下批评建议和推荐文献对内容进行改进:\n\n"
+ f"批评建议:\n{feedback}\n\n"
+ f"推荐文献:\n{arxiv_results}\n\n"
+ f"请优化初始内容,使其更加清晰、丰富,并符合专业水准。"
+ ),
+ )
+ message = self.writer(improvement_prompt)
+ if message.content:
+ step3_placeholder.markdown(f"**最终优化的博客内容**:\n\n{message.content}")
+ else:
+ step3_placeholder.markdown("**最终优化的博客内容为空,请检查生成逻辑。**")
+
+ return message
+
+def setup_sidebar():
+ """设置侧边栏,选择模型。"""
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
+ api_base = st.sidebar.text_input(
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
+ )
+
+ return model_name, api_base
+
+def main():
+ """
+ 主函数:构建Streamlit界面并处理用户交互
+ """
+ st.set_page_config(layout='wide', page_title='Lagent Web Demo', page_icon='🤖')
+ st.title("多代理博客优化助手")
+
+ model_type, api_base = setup_sidebar()
+ topic = st.text_input('输入一个话题:', 'Self-Supervised Learning')
+ generate_button = st.button('生成博客内容')
+
+ if (
+ 'blogger' not in st.session_state or
+ st.session_state['model_type'] != model_type or
+ st.session_state['api_base'] != api_base
+ ):
+ st.session_state['blogger'] = AsyncBlogger(
+ model_type=model_type,
+ api_base=api_base,
+ writer_prompt="你是一位优秀的AI内容写作者,请撰写一篇有吸引力且信息丰富的博客内容。",
+ critic_prompt="""
+ 作为一位严谨的批评者,请给出建设性的批评和改进建议,并基于相关主题使用已有的工具推荐一些参考文献,推荐的关键词应该是英语形式,简洁且切题。
+ 请按照以下格式提供反馈:
+ 1. 批评建议:
+ - (具体建议)
+ 2. 推荐的关键词:
+ - (关键词1, 关键词2, ...)
+ """,
+ critic_prefix="请批评以下内容,并提供改进建议:\n\n"
+ )
+ st.session_state['model_type'] = model_type
+ st.session_state['api_base'] = api_base
+
+ if generate_button:
+ update_placeholder = st.empty()
+
+ async def run_async_blogger():
+ message = AgentMessage(
+ sender='user',
+ content=f"请撰写一篇关于{topic}的博客文章,要求表达专业,生动有趣,并且易于理解。"
+ )
+ result = await st.session_state['blogger'].forward(message, update_placeholder)
+ return result
+
+ loop = asyncio.new_event_loop()
+ asyncio.set_event_loop(loop)
+ loop.run_until_complete(run_async_blogger())
+
+if __name__ == '__main__':
+ main()
\ No newline at end of file
diff --git a/examples/run_agent_lmdeploy.py b/examples/run_agent_lmdeploy.py
new file mode 100644
index 0000000000000000000000000000000000000000..21b80592a16cee4e6c572d47caca574c0778df27
--- /dev/null
+++ b/examples/run_agent_lmdeploy.py
@@ -0,0 +1,177 @@
+import json
+import time
+
+from lagent.agents.aggregator import InternLMToolAggregator
+from lagent.agents.stream import PLUGIN_CN, AgentForInternLM, MathCoder, get_plugin_prompt
+from lagent.llms import INTERNLM2_META, LMDeployPipeline
+from lagent.prompts.parsers import PluginParser
+
+model = LMDeployPipeline(
+ path='internlm/internlm2_5-7b-chat',
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>', '<|action_end|>'],
+ max_new_tokens=1024,
+)
+
+# ----------------------- interpreter -----------------------
+print('-' * 80, 'interpreter', '-' * 80)
+coder = MathCoder(
+ llm=model,
+ aggregator=InternLMToolAggregator(few_shot=[[
+ {
+ 'role':
+ 'user',
+ 'content':
+ "Mike paid $\\$1.25$ for a stamp three years ago. He was just offered double that amount for the stamp. Assuming the stamp's offer price doubles every three years, how many dollars will he be offered in 12 more years?"
+ },
+ {
+ 'role':
+ 'language',
+ 'content':
+ "Let's break down the problem into smaller steps to understand how to approach it.\n\n**Step 1:** Determine the initial amount paid for the stamp, which is $1.25.\n\n**Step 2:** Understand the pattern of the offer price increase. The offer price doubles every three years.\n\n**Step 3:** Calculate the offer price in 12 more years.\n\nSince the offer price doubles every three years, in 12 years, the price will double 12 / 3 = 4 times.\n\nWe can represent the offer price after 12 more years as:\n\\[ \\text{Offer Price} = \\text{Initial Price} \\times 2^{(\\text{Number of Doublings})} \\]\n\nLet's calculate this using Python to get the exact figure.\n\n"
+ },
+ {
+ 'role': 'tool',
+ 'content':
+ '```python\nfrom sympy import symbols, Eq, solve\n\n# Define the variables\ninitial_price = 1.25\ndoublings_in_12_years = 12 / 3\n\n# Calculate the offer price after 12 years\noffer_price_12_years = initial_price * 2**doublings_in_12_years\n\noffer_price_12_years\n```',
+ 'name': 'interpreter',
+ },
+ {
+ 'role': 'environment',
+ 'content': '20.0',
+ 'name': 'interpreter'
+ },
+ {
+ 'role':
+ 'language',
+ 'content':
+ 'After calculating the given formula, the offer price for the stamp in 12 more years is found to be $\\boxed{20.0}$ dollars.'
+ },
+ ]]))
+query = (
+ 'Marie is thinking of a multiple of 63, while Jay is thinking of a factor '
+ 'of 63. They happen to be thinking of the same number. There are two '
+ 'possibilities for the number that each of them is thinking of, one '
+ 'positive and one negative. Find the product of these two numbers.')
+res = coder(query, session_id=0)
+# print(res.model_dump_json())
+# print('-' * 120)
+print(coder.get_steps(0))
+import json
+
+print(
+ json.dumps(
+ coder.agent.aggregator.aggregate(coder.agent.memory, coder.agent.name,
+ coder.agent.output_format),
+ ensure_ascii=False,
+ indent=4))
+
+state_dict = {
+ 'memory': [{
+ 'sender': 'user',
+ 'content':
+ 'Marie is thinking of a multiple of 63, while Jay is thinking of a factor of 63. They happen to be thinking of the same number. There are two possibilities for the number that each of them is thinking of, one positive and one negative. Find the product of these two numbers.',
+ 'formatted': None,
+ 'type': None,
+ 'receiver': None
+ }, {
+ 'sender': 'Agent',
+ 'content':
+ 'The product of the two numbers, \\(63\\) and \\(-63\\), is \\(-3969\\). Therefore, the product of the two numbers that Marie and Jay are thinking of is \\(\\boxed{-3969}\\).',
+ 'formatted': {
+ 'tool_type': None,
+ 'thought':
+ 'The product of the two numbers, \\(63\\) and \\(-63\\), is \\(-3969\\). Therefore, the product of the two numbers that Marie and Jay are thinking of is \\(\\boxed{-3969}\\).',
+ 'action': None,
+ 'status': 0
+ },
+ 'type': None,
+ 'receiver': None
+ }],
+ 'agent.memory': [{
+ 'sender': 'user',
+ 'content':
+ 'Marie is thinking of a multiple of 63, while Jay is thinking of a factor of 63. They happen to be thinking of the same number. There are two possibilities for the number that each of them is thinking of, one positive and one negative. Find the product of these two numbers.',
+ 'formatted': None,
+ 'type': None,
+ 'receiver': None
+ }, {
+ 'sender': 'Agent',
+ 'content':
+ "To solve this problem, we first need to identify the factors of 63. Since Marie is thinking of a multiple of 63 and Jay is thinking of a factor of 63, and they are thinking of the same number, we need to find the factors of 63 and then determine the multiples of 63 that match these factors.\n\nLet's start by finding the factors of 63 using Python.<|action_start|><|interpreter|>\n```python\nfrom sympy import divisors\n\n# Find the factors of 63\nfactors_of_63 = divisors(63)\nfactors_of_63\n```",
+ 'formatted': {
+ 'tool_type': 'interpreter',
+ 'thought':
+ "To solve this problem, we first need to identify the factors of 63. Since Marie is thinking of a multiple of 63 and Jay is thinking of a factor of 63, and they are thinking of the same number, we need to find the factors of 63 and then determine the multiples of 63 that match these factors.\n\nLet's start by finding the factors of 63 using Python.",
+ 'action':
+ '```python\nfrom sympy import divisors\n\n# Find the factors of 63\nfactors_of_63 = divisors(63)\nfactors_of_63\n```',
+ 'status': 1
+ },
+ 'type': None,
+ 'receiver': None
+ }, {
+ 'sender': 'ActionExecutor',
+ 'content': '[1, 3, 7, 9, 21, 63]',
+ 'formatted': None,
+ 'type': None,
+ 'receiver': None
+ }, {
+ 'sender': 'Agent',
+ 'content':
+ "The factors of 63 are \\(1, 3, 7, 9, 21,\\) and \\(63\\). Since Marie is thinking of a multiple of 63 and Jay is thinking of a factor of 63, and they are thinking of the same number, the number they are thinking of must be one of the factors of 63.\n\nGiven that there are two possibilities for the number they are thinking of, one positive and one negative, we need to consider both \\(63\\) and \\(-63\\) as the number they might be thinking of.\n\nNow, let's calculate the product of these two numbers, \\(63\\) and \\(-63\\).<|action_start|><|interpreter|>\n```python\n# Calculate the product of 63 and -63\nproduct = 63 * (-63)\nproduct\n```",
+ 'formatted': {
+ 'tool_type': 'interpreter',
+ 'thought':
+ "The factors of 63 are \\(1, 3, 7, 9, 21,\\) and \\(63\\). Since Marie is thinking of a multiple of 63 and Jay is thinking of a factor of 63, and they are thinking of the same number, the number they are thinking of must be one of the factors of 63.\n\nGiven that there are two possibilities for the number they are thinking of, one positive and one negative, we need to consider both \\(63\\) and \\(-63\\) as the number they might be thinking of.\n\nNow, let's calculate the product of these two numbers, \\(63\\) and \\(-63\\).",
+ 'action':
+ '```python\n# Calculate the product of 63 and -63\nproduct = 63 * (-63)\nproduct\n```',
+ 'status': 1
+ },
+ 'type': None,
+ 'receiver': None
+ }, {
+ 'sender': 'ActionExecutor',
+ 'content': '-3969',
+ 'formatted': None,
+ 'type': None,
+ 'receiver': None
+ }, {
+ 'sender': 'Agent',
+ 'content':
+ 'The product of the two numbers, \\(63\\) and \\(-63\\), is \\(-3969\\). Therefore, the product of the two numbers that Marie and Jay are thinking of is \\(\\boxed{-3969}\\).',
+ 'formatted': {
+ 'tool_type': None,
+ 'thought':
+ 'The product of the two numbers, \\(63\\) and \\(-63\\), is \\(-3969\\). Therefore, the product of the two numbers that Marie and Jay are thinking of is \\(\\boxed{-3969}\\).',
+ 'action': None,
+ 'status': 0
+ },
+ 'type': None,
+ 'receiver': None
+ }]
+}
+coder.load_state_dict(state_dict)
+print(coder.state_dict() == state_dict)
+print(coder.state_dict())
+
+# ----------------------- plugin -----------------------
+print('-' * 80, 'plugin', '-' * 80)
+plugins = [dict(type='lagent.actions.ArxivSearch')]
+agent = AgentForInternLM(
+ llm=model,
+ plugins=plugins,
+ output_format=dict(
+ type=PluginParser,
+ template=PLUGIN_CN,
+ prompt=get_plugin_prompt(plugins)))
+
+tic = time.time()
+query = 'LLM智能体方向的最新论文有哪些?'
+res = agent(query, session_id=0)
+print(res.model_dump_json())
+print('-' * 120)
+print(agent.get_steps(0))
+print(f'time elapsed: {time.time() - tic}')
diff --git a/examples/run_agent_services.py b/examples/run_agent_services.py
new file mode 100644
index 0000000000000000000000000000000000000000..65fd8e9fab4f06414ed1a2c452eb39fd38028dca
--- /dev/null
+++ b/examples/run_agent_services.py
@@ -0,0 +1,110 @@
+import asyncio
+import time
+
+from lagent.agents.stream import PLUGIN_CN, get_plugin_prompt
+from lagent.distributed import AsyncHTTPAgentClient, AsyncHTTPAgentServer, HTTPAgentClient, HTTPAgentServer
+from lagent.llms import INTERNLM2_META
+from lagent.schema import AgentMessage
+from lagent.utils import create_object
+
+loop = asyncio.new_event_loop()
+asyncio.set_event_loop(loop)
+
+server = HTTPAgentServer(
+ '1',
+ {
+ 'type': 'lagent.agents.AsyncAgent',
+ 'llm': {
+ 'type': 'lagent.llms.AsyncLMDeployPipeline',
+ 'path': 'internlm/internlm2_5-7b-chat',
+ 'meta_template': INTERNLM2_META,
+ }
+ },
+ port=8090,
+)
+print(server.is_alive)
+message = AgentMessage(sender='user', content='hello')
+result = server(message)
+print(result)
+server.shutdown()
+
+# math coder
+server = AsyncHTTPAgentServer(
+ '1',
+ {
+ 'type': 'lagent.agents.AsyncMathCoder',
+ 'llm': {
+ 'type': 'lagent.llms.AsyncLMDeployPipeline',
+ 'path': 'internlm/internlm2_5-7b-chat',
+ 'meta_template': INTERNLM2_META,
+ 'tp': 1,
+ 'top_k': 1,
+ 'temperature': 1.0,
+ 'stop_words': ['<|im_end|>', '<|action_end|>'],
+ 'max_new_tokens': 1024,
+ },
+ 'interpreter': {
+ 'type': 'lagent.actions.AsyncIPythonInterpreter',
+ 'max_kernels': 100
+ },
+ },
+ port=8091,
+)
+message = AgentMessage(
+ sender='user',
+ content=
+ ('Marie is thinking of a multiple of 63, while Jay is thinking of a factor '
+ 'of 63. They happen to be thinking of the same number. There are two '
+ 'possibilities for the number that each of them is thinking of, one '
+ 'positive and one negative. Find the product of these two numbers.'))
+result = server(message)
+print(loop.run_until_complete(result))
+print(server.state_dict())
+
+client = AsyncHTTPAgentClient(port=8091)
+result = client('hello', session_id=1)
+print(loop.run_until_complete(result))
+print(client.state_dict(1))
+
+client = HTTPAgentClient(port=8091)
+print(client.state_dict(1))
+print(client('introduce yourself', session_id=1))
+print(client.state_dict(1))
+server.shutdown()
+
+# plugins
+plugins = [dict(type='lagent.actions.AsyncArxivSearch')]
+server_cfg = dict(
+ type='lagent.distributed.AsyncHTTPAgentServer',
+ gpu_id='1',
+ config={
+ 'type': 'lagent.agents.AsyncAgentForInternLM',
+ 'llm': {
+ 'type': 'lagent.llms.AsyncLMDeployPipeline',
+ 'path': 'internlm/internlm2_5-7b-chat',
+ 'meta_template': INTERNLM2_META,
+ 'tp': 1,
+ 'top_k': 1,
+ 'temperature': 1.0,
+ 'stop_words': ['<|im_end|>', '<|action_end|>'],
+ 'max_new_tokens': 1024,
+ },
+ 'plugins': plugins,
+ 'output_format': {
+ 'type': 'lagent.prompts.parsers.PluginParser',
+ 'template': PLUGIN_CN,
+ 'prompt': get_plugin_prompt(plugins),
+ }
+ },
+ port=8091,
+)
+server = create_object(server_cfg)
+tic = time.time()
+coros = [
+ server(query, session_id=i)
+ for i, query in enumerate(['LLM智能体方向的最新论文有哪些?'] * 50)
+]
+res = loop.run_until_complete(asyncio.gather(*coros))
+print('-' * 120)
+print(f'time elapsed: {time.time() - tic}')
+server.shutdown()
diff --git a/examples/run_async_agent_lmdeploy.py b/examples/run_async_agent_lmdeploy.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbd2b15f3db01f36c2bf7833ada31930dc28b192
--- /dev/null
+++ b/examples/run_async_agent_lmdeploy.py
@@ -0,0 +1,70 @@
+import asyncio
+import json
+import time
+
+from datasets import load_dataset
+
+from lagent.agents.stream import PLUGIN_CN, AsyncAgentForInternLM, AsyncMathCoder, get_plugin_prompt
+from lagent.llms import INTERNLM2_META
+from lagent.llms.lmdeploy_wrapper import AsyncLMDeployPipeline
+from lagent.prompts.parsers import PluginParser
+
+# set up the loop
+loop = asyncio.new_event_loop()
+asyncio.set_event_loop(loop)
+# initialize the model
+model = AsyncLMDeployPipeline(
+ path='internlm/internlm2_5-7b-chat',
+ meta_template=INTERNLM2_META,
+ model_name='internlm-chat',
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>', '<|action_end|>'],
+ max_new_tokens=1024,
+)
+
+# ----------------------- interpreter -----------------------
+print('-' * 80, 'interpreter', '-' * 80)
+
+ds = load_dataset('lighteval/MATH', split='test')
+problems = [item['problem'] for item in ds.select(range(0, 5000, 2))]
+
+coder = AsyncMathCoder(
+ llm=model,
+ interpreter=dict(
+ type='lagent.actions.AsyncIPythonInterpreter', max_kernels=300),
+ max_turn=11)
+tic = time.time()
+coros = [coder(query, session_id=i) for i, query in enumerate(problems)]
+res = loop.run_until_complete(asyncio.gather(*coros))
+# print([r.model_dump_json() for r in res])
+print('-' * 120)
+print(f'time elapsed: {time.time() - tic}')
+
+with open('./tmp_1.json', 'w') as f:
+ json.dump([coder.get_steps(i) for i in range(len(res))],
+ f,
+ ensure_ascii=False,
+ indent=4)
+
+# ----------------------- plugin -----------------------
+print('-' * 80, 'plugin', '-' * 80)
+plugins = [dict(type='lagent.actions.AsyncArxivSearch')]
+agent = AsyncAgentForInternLM(
+ llm=model,
+ plugins=plugins,
+ output_format=dict(
+ type=PluginParser,
+ template=PLUGIN_CN,
+ prompt=get_plugin_prompt(plugins)))
+
+tic = time.time()
+coros = [
+ agent(query, session_id=i)
+ for i, query in enumerate(['LLM智能体方向的最新论文有哪些?'] * 50)
+]
+res = loop.run_until_complete(asyncio.gather(*coros))
+# print([r.model_dump_json() for r in res])
+print('-' * 120)
+print(f'time elapsed: {time.time() - tic}')
diff --git a/examples/run_async_agent_lmdeploy_server.py b/examples/run_async_agent_lmdeploy_server.py
new file mode 100644
index 0000000000000000000000000000000000000000..a3f78dea1bcc11101c5b71670d63c97707a9d3fa
--- /dev/null
+++ b/examples/run_async_agent_lmdeploy_server.py
@@ -0,0 +1,86 @@
+import asyncio
+import json
+import time
+
+from datasets import load_dataset
+
+from lagent.agents.stream import AsyncAgentForInternLM, AsyncMathCoder, get_plugin_prompt
+from lagent.llms import INTERNLM2_META
+from lagent.llms.lmdeploy_wrapper import AsyncLMDeployClient, AsyncLMDeployServer
+
+# set up the loop
+loop = asyncio.new_event_loop()
+asyncio.set_event_loop(loop)
+# initialize the model
+model = AsyncLMDeployServer(
+ path='internlm/internlm2_5-7b-chat',
+ meta_template=INTERNLM2_META,
+ model_name='internlm-chat',
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>', '<|action_end|>'],
+ max_new_tokens=1024,
+)
+
+# ----------------------- interpreter -----------------------
+print('-' * 80, 'interpreter', '-' * 80)
+
+ds = load_dataset('lighteval/MATH', split='test')
+problems = [item['problem'] for item in ds.select(range(50))]
+
+
+# coder = AsyncMathCoder(
+# llm=model,
+# interpreter=dict(type='AsyncIPythonInterpreter', max_kernels=250))
+# tic = time.time()
+# coros = [coder(query, session_id=i) for i, query in enumerate(problems)]
+# res = loop.run_until_complete(asyncio.gather(*coros))
+# # print([r.model_dump_json() for r in res])
+# print('-' * 120)
+# print(f'time elapsed: {time.time() - tic}')
+# with open('./tmp_4.json', 'w') as f:
+# json.dump([coder.get_steps(i) for i in range(len(res))],
+# f,
+# ensure_ascii=False,
+# indent=4)
+
+# ----------------------- streaming chat -----------------------
+async def streaming(llm, problem):
+ async for out in llm.stream_chat([{'role': 'user', 'content': problem}]):
+ print(out)
+
+
+tic = time.time()
+client = AsyncLMDeployClient(
+ url='http://127.0.0.1:23333',
+ meta_template=INTERNLM2_META,
+ model_name='internlm2_5-7b-chat',
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>', '<|action_end|>'],
+ max_new_tokens=1024,
+)
+# loop.run_until_complete(streaming(model, problems[0]))
+loop.run_until_complete(streaming(client, problems[0]))
+print(time.time() - tic)
+
+# ----------------------- plugin -----------------------
+# print('-' * 80, 'plugin', '-' * 80)
+# plugins = [dict(type='AsyncArxivSearch')]
+# agent = AsyncAgentForInternLM(
+# llm=model,
+# plugins=plugins,
+# aggregator=dict(
+# type='InternLMToolAggregator',
+# plugin_prompt=get_plugin_prompt(plugins)))
+
+# tic = time.time()
+# coros = [
+# agent(query, session_id=i)
+# for i, query in enumerate(['LLM智能体方向的最新论文有哪些?'] * 50)
+# ]
+# res = loop.run_until_complete(asyncio.gather(*coros))
+# # print([r.model_dump_json() for r in res])
+# print('-' * 120)
+# print(f'time elapsed: {time.time() - tic}')
diff --git a/examples/run_async_agent_openai.py b/examples/run_async_agent_openai.py
new file mode 100644
index 0000000000000000000000000000000000000000..a9952f276182b32f81880986b344dfed8b19c2d7
--- /dev/null
+++ b/examples/run_async_agent_openai.py
@@ -0,0 +1,61 @@
+import asyncio
+import json
+import time
+
+from datasets import load_dataset
+
+from lagent.agents import AsyncMathCoder
+from lagent.agents.aggregator import InternLMToolAggregator
+from lagent.llms import AsyncGPTAPI
+from lagent.prompts.parsers import ToolParser
+
+loop = asyncio.new_event_loop()
+asyncio.set_event_loop(loop)
+
+interpreter_prompt = (
+ 'Below is a math problem. Please solve it step by step with the assistance of Python programming. Consider using Sympy or Numpy library '
+ 'to facilitate your derivation, calculation and equation solving. Utilize the "pi" symbol and "Rational" from Sympy '
+ 'for $$\pi$$ and fractions, and simplify all fractions and square roots without converting them to decimal values. '
+ 'Please encapsulate each generated Jupyter Python code block with tags "{begin}" and "{end}". Conclude the '
+ r'final answer when observations are sufficient and encapsulate the numerical result with LaTeX syntax "\boxed{{}}" '
+ 'without any unit, and end your conclusion with the special token "[END]" to denote the completion of your response. '
+ 'Keep the following points in mind:\n'
+ '- You must alternately use human and programming languages in the chain of thought;\n'
+ '- The number of your reasoning steps should not exceed **three**, which means you may merge some intermediate steps when the original answer is tedious.'
+)
+
+async_llm = dict(
+ type=AsyncGPTAPI,
+ model='gpt-4o-2024-05-13',
+ retry=50,
+ key='',
+ max_new_tokens=2048,
+ stop_words=['\n',
+ end='\n'),
+ aggregator=InternLMToolAggregator(
+ environment_role='system',
+ environment_begin=''),
+ finish_condition=lambda m: '[END]' in m.content,
+)
+
+ds = load_dataset('lighteval/MATH', split='train')
+problems = [item['problem'] for item in ds.select(range(30))]
+
+tic = time.time()
+coros = [async_agent(q, session_id=i) for i, q in enumerate(problems)]
+res = loop.run_until_complete(asyncio.gather(*coros))
+print(time.time() - tic)
+with open('tmp_6.json', 'w') as f:
+ json.dump([async_agent.get_steps(i) for i in range(len(problems))],
+ f,
+ ensure_ascii=False,
+ indent=4)
diff --git a/examples/run_async_agent_vllm.py b/examples/run_async_agent_vllm.py
new file mode 100644
index 0000000000000000000000000000000000000000..d008113d1dd52d0a429f51cd3309b4d0e5cb7f53
--- /dev/null
+++ b/examples/run_async_agent_vllm.py
@@ -0,0 +1,58 @@
+import asyncio
+import json
+import time
+
+from datasets import load_dataset
+
+from lagent.agents.stream import AsyncAgentForInternLM, AsyncMathCoder
+from lagent.llms import INTERNLM2_META
+from lagent.llms.vllm_wrapper import AsyncVllmModel
+from lagent.prompts.parsers import ToolParser
+
+# set up the loop
+loop = asyncio.new_event_loop()
+asyncio.set_event_loop(loop)
+# initialize the model
+model = AsyncVllmModel(
+ path='Qwen/Qwen2-7B-Instruct',
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>', '\n```\n'],
+ max_new_tokens=1024,
+)
+
+# ----------------------- interpreter -----------------------
+print('-' * 80, 'interpreter', '-' * 80)
+
+ds = load_dataset('lighteval/MATH', split='test')
+problems = [item['problem'] for item in ds.select(range(50))]
+
+coder = AsyncMathCoder(
+ llm=model,
+ interpreter=dict(
+ type='lagent.actions.AsyncIPythonInterpreter', max_kernels=200),
+ output_format=ToolParser(
+ 'interpreter',
+ template=
+ ('Integrate step-by-step reasoning and Python code to solve math problems '
+ 'using the following guidelines:\n'
+ '- Analyze the question and write jupyter code to solve the problem;\n'
+ r"- Present the final result in LaTeX using a '\boxed{{}}' without any "
+ 'units. \n'),
+ begin='\n```python\n',
+ end='\n```\n'))
+
+tic = time.time()
+coros = [coder(query, session_id=i) for i, query in enumerate(problems)]
+res = loop.run_until_complete(asyncio.gather(*coros))
+# print([r.model_dump_json() for r in res])
+print('-' * 120)
+print(f'time elapsed: {time.time() - tic}')
+
+with open('./tmp_3.json', 'w') as f:
+ json.dump([coder.get_steps(i) for i in range(len(res))],
+ f,
+ ensure_ascii=False,
+ indent=4)
diff --git a/examples/run_ray_async_agent_lmdeploy.py b/examples/run_ray_async_agent_lmdeploy.py
new file mode 100644
index 0000000000000000000000000000000000000000..530ca1b2a472f847bff5a32990b3e896c3354b8c
--- /dev/null
+++ b/examples/run_ray_async_agent_lmdeploy.py
@@ -0,0 +1,65 @@
+import asyncio
+import json
+import time
+
+import ray
+from datasets import load_dataset
+
+from lagent.distributed.ray_serve import AsyncAgentRayActor
+from lagent.llms import INTERNLM2_META
+from lagent.llms.lmdeploy_wrapper import AsyncLMDeployPipeline
+
+ray.init()
+
+# set up the loop
+
+# initialize the model
+loop = asyncio.new_event_loop()
+asyncio.set_event_loop(loop)
+model = dict(
+ type=AsyncLMDeployPipeline,
+ path='internlm/internlm2_5-7b-chat',
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>', '<|action_end|>'],
+ max_new_tokens=1024,
+)
+
+# ----------------------- interpreter -----------------------
+print('-' * 80, 'interpreter', '-' * 80)
+ds = load_dataset('lighteval/MATH', split='test')
+problems = [item['problem'] for item in ds.select(range(5000))]
+
+coder = dict(
+ type='lagent.agents.stream.AsyncMathCoder',
+ llm=model,
+ interpreter=dict(type='AsyncIPythonInterpreter', max_kernels=300),
+)
+tic = time.time()
+
+actor1 = AsyncAgentRayActor(coder.copy(), num_gpus=1)
+actor2 = AsyncAgentRayActor(coder.copy(), num_gpus=1)
+corots = [
+ actor1(query, session_id=i)
+ for i, query in enumerate(problems[:len(problems) // 2])
+]
+corots += [
+ actor2(query, session_id=i)
+ for i, query in enumerate(problems[len(problems) // 2:])
+]
+results = loop.run_until_complete(asyncio.gather(*corots))
+
+print('-' * 120)
+print(f'time elapsed: {time.time() - tic}')
+all_step = ray.get([
+ actor1.agent_actor.get_steps.remote(i) for i in range(len(problems) // 2)
+])
+all_step += ray.get([
+ actor2.agent_actor.get_steps.remote(i)
+ for i in range(len(problems[len(problems) // 2:]))
+])
+
+with open('./tmp_1.json', 'w') as f:
+ json.dump(all_step, f, ensure_ascii=False, indent=4)
diff --git a/lagent.egg-info/PKG-INFO b/lagent.egg-info/PKG-INFO
new file mode 100644
index 0000000000000000000000000000000000000000..0451a90147a9100b015eaa27ccb2a46640fe0a3f
--- /dev/null
+++ b/lagent.egg-info/PKG-INFO
@@ -0,0 +1,600 @@
+Metadata-Version: 2.1
+Name: lagent
+Version: 0.5.0rc1
+Summary: A lightweight framework for building LLM-based agents
+Home-page: https://github.com/InternLM/lagent
+License: Apache 2.0
+Keywords: artificial general intelligence,agent,agi,llm
+Description-Content-Type: text/markdown
+License-File: LICENSE
+Requires-Dist: aiohttp
+Requires-Dist: arxiv
+Requires-Dist: asyncache
+Requires-Dist: asyncer
+Requires-Dist: distro
+Requires-Dist: duckduckgo_search==5.3.1b1
+Requires-Dist: filelock
+Requires-Dist: func_timeout
+Requires-Dist: griffe<1.0
+Requires-Dist: json5
+Requires-Dist: jsonschema
+Requires-Dist: jupyter==1.0.0
+Requires-Dist: jupyter_client==8.6.2
+Requires-Dist: jupyter_core==5.7.2
+Requires-Dist: pydantic==2.6.4
+Requires-Dist: requests
+Requires-Dist: termcolor
+Requires-Dist: tiktoken
+Requires-Dist: timeout-decorator
+Requires-Dist: typing-extensions
+Provides-Extra: all
+Requires-Dist: google-search-results; extra == "all"
+Requires-Dist: lmdeploy>=0.2.5; extra == "all"
+Requires-Dist: pillow; extra == "all"
+Requires-Dist: python-pptx; extra == "all"
+Requires-Dist: timeout_decorator; extra == "all"
+Requires-Dist: torch; extra == "all"
+Requires-Dist: transformers<=4.40,>=4.34; extra == "all"
+Requires-Dist: vllm>=0.3.3; extra == "all"
+Requires-Dist: aiohttp; extra == "all"
+Requires-Dist: arxiv; extra == "all"
+Requires-Dist: asyncache; extra == "all"
+Requires-Dist: asyncer; extra == "all"
+Requires-Dist: distro; extra == "all"
+Requires-Dist: duckduckgo_search==5.3.1b1; extra == "all"
+Requires-Dist: filelock; extra == "all"
+Requires-Dist: func_timeout; extra == "all"
+Requires-Dist: griffe<1.0; extra == "all"
+Requires-Dist: json5; extra == "all"
+Requires-Dist: jsonschema; extra == "all"
+Requires-Dist: jupyter==1.0.0; extra == "all"
+Requires-Dist: jupyter_client==8.6.2; extra == "all"
+Requires-Dist: jupyter_core==5.7.2; extra == "all"
+Requires-Dist: pydantic==2.6.4; extra == "all"
+Requires-Dist: requests; extra == "all"
+Requires-Dist: termcolor; extra == "all"
+Requires-Dist: tiktoken; extra == "all"
+Requires-Dist: timeout-decorator; extra == "all"
+Requires-Dist: typing-extensions; extra == "all"
+Provides-Extra: optional
+Requires-Dist: google-search-results; extra == "optional"
+Requires-Dist: lmdeploy>=0.2.5; extra == "optional"
+Requires-Dist: pillow; extra == "optional"
+Requires-Dist: python-pptx; extra == "optional"
+Requires-Dist: timeout_decorator; extra == "optional"
+Requires-Dist: torch; extra == "optional"
+Requires-Dist: transformers<=4.40,>=4.34; extra == "optional"
+Requires-Dist: vllm>=0.3.3; extra == "optional"
+
+
+
+
+
+[![docs](https://img.shields.io/badge/docs-latest-blue)](https://lagent.readthedocs.io/en/latest/)
+[![PyPI](https://img.shields.io/pypi/v/lagent)](https://pypi.org/project/lagent)
+[![license](https://img.shields.io/github/license/InternLM/lagent.svg)](https://github.com/InternLM/lagent/tree/main/LICENSE)
+[![issue resolution](https://img.shields.io/github/issues-closed-raw/InternLM/lagent)](https://github.com/InternLM/lagent/issues)
+[![open issues](https://img.shields.io/github/issues-raw/InternLM/lagent)](https://github.com/InternLM/lagent/issues)
+![Visitors](https://api.visitorbadge.io/api/visitors?path=InternLM%2Flagent%20&countColor=%23263759&style=flat)
+![GitHub forks](https://img.shields.io/github/forks/InternLM/lagent)
+![GitHub Repo stars](https://img.shields.io/github/stars/InternLM/lagent)
+![GitHub contributors](https://img.shields.io/github/contributors/InternLM/lagent)
+
+
+
+
+ 👋 join us on 𝕏 (Twitter), Discord and WeChat
+
+
+## Installation
+
+Install from source:
+
+```bash
+git clone https://github.com/InternLM/lagent.git
+cd lagent
+pip install -e .
+```
+
+## Usage
+
+Lagent is inspired by the design philosophy of PyTorch. We expect that the analogy of neural network layers will make the workflow clearer and more intuitive, so users only need to focus on creating layers and defining message passing between them in a Pythonic way. This is a simple tutorial to get you quickly started with building multi-agent applications.
+
+### Models as Agents
+
+Agents use `AgentMessage` for communication.
+
+```python
+from typing import Dict, List
+from lagent.agents import Agent
+from lagent.schema import AgentMessage
+from lagent.llms import VllmModel, INTERNLM2_META
+
+llm = VllmModel(
+ path='Qwen/Qwen2-7B-Instruct',
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['<|im_end|>'],
+ max_new_tokens=1024,
+)
+system_prompt = '你的回答只能从“典”、“孝”、“急”三个字中选一个。'
+agent = Agent(llm, system_prompt)
+
+user_msg = AgentMessage(sender='user', content='今天天气情况')
+bot_msg = agent(user_msg)
+print(bot_msg)
+```
+
+```
+content='急' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+### Memory as State
+
+Both input and output messages will be added to the memory of `Agent` in each forward pass. This is performed in `__call__` rather than `forward`. See the following pseudo code
+
+```python
+ def __call__(self, *message):
+ message = pre_hooks(message)
+ add_memory(message)
+ message = self.forward(*message)
+ add_memory(message)
+ message = post_hooks(message)
+ return message
+```
+
+Inspect the memory in two ways
+
+```python
+memory: List[AgentMessage] = agent.memory.get_memory()
+print(memory)
+print('-' * 120)
+dumped_memory: Dict[str, List[dict]] = agent.state_dict()
+print(dumped_memory['memory'])
+```
+
+```
+[AgentMessage(content='今天天气情况', sender='user', formatted=None, extra_info=None, type=None, receiver=None, stream_state=), AgentMessage(content='急', sender='Agent', formatted=None, extra_info=None, type=None, receiver=None, stream_state=)]
+------------------------------------------------------------------------------------------------------------------------
+[{'content': '今天天气情况', 'sender': 'user', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': }, {'content': '急', 'sender': 'Agent', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': }]
+```
+
+Clear the memory of this session(`session_id=0` by default):
+
+```python
+agent.memory.reset()
+```
+
+### Custom Message Aggregation
+
+`DefaultAggregator` is called under the hood to assemble and convert `AgentMessage` to OpenAI message format.
+
+```python
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
+ formatted_messages = self.aggregator.aggregate(
+ self.memory.get(session_id),
+ self.name,
+ self.output_format,
+ self.template,
+ )
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
+ ...
+```
+
+Implement a simple aggregator that can receive few-shots
+
+```python
+from typing import List, Union
+from lagent.memory import Memory
+from lagent.prompts import StrParser
+from lagent.agents.aggregator import DefaultAggregator
+
+class FewshotAggregator(DefaultAggregator):
+ def __init__(self, few_shot: List[dict] = None):
+ self.few_shot = few_shot or []
+
+ def aggregate(self,
+ messages: Memory,
+ name: str,
+ parser: StrParser = None,
+ system_instruction: Union[str, dict, List[dict]] = None) -> List[dict]:
+ _message = []
+ if system_instruction:
+ _message.extend(
+ self.aggregate_system_intruction(system_instruction))
+ _message.extend(self.few_shot)
+ messages = messages.get_memory()
+ for message in messages:
+ if message.sender == name:
+ _message.append(
+ dict(role='assistant', content=str(message.content)))
+ else:
+ user_message = message.content
+ if len(_message) > 0 and _message[-1]['role'] == 'user':
+ _message[-1]['content'] += user_message
+ else:
+ _message.append(dict(role='user', content=user_message))
+ return _message
+
+agent = Agent(
+ llm,
+ aggregator=FewshotAggregator(
+ [
+ {"role": "user", "content": "今天天气"},
+ {"role": "assistant", "content": "【晴】"},
+ ]
+ )
+)
+user_msg = AgentMessage(sender='user', content='昨天天气')
+bot_msg = agent(user_msg)
+print(bot_msg)
+```
+
+```
+content='【多云转晴,夜间有轻微降温】' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+### Flexible Response Formatting
+
+In `AgentMessage`, `formatted` is reserved to store information parsed by `output_format` from the model output.
+
+```python
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
+ ...
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
+ if self.output_format:
+ formatted_messages = self.output_format.parse_response(llm_response)
+ return AgentMessage(
+ sender=self.name,
+ content=llm_response,
+ formatted=formatted_messages,
+ )
+ ...
+```
+
+Use a tool parser as follows
+
+````python
+from lagent.prompts.parsers import ToolParser
+
+system_prompt = "逐步分析并编写Python代码解决以下问题。"
+parser = ToolParser(tool_type='code interpreter', begin='```python\n', end='\n```\n')
+llm.gen_params['stop_words'].append('\n```\n')
+agent = Agent(llm, system_prompt, output_format=parser)
+
+user_msg = AgentMessage(
+ sender='user',
+ content='Marie is thinking of a multiple of 63, while Jay is thinking of a '
+ 'factor of 63. They happen to be thinking of the same number. There are '
+ 'two possibilities for the number that each of them is thinking of, one '
+ 'positive and one negative. Find the product of these two numbers.')
+bot_msg = agent(user_msg)
+print(bot_msg.model_dump_json(indent=4))
+````
+
+````
+{
+ "content": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n```python\ndef find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
+ "sender": "Agent",
+ "formatted": {
+ "tool_type": "code interpreter",
+ "thought": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n",
+ "action": "def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
+ "status": 1
+ },
+ "extra_info": null,
+ "type": null,
+ "receiver": null,
+ "stream_state": 0
+}
+````
+
+### Consistency of Tool Calling
+
+`ActionExecutor` uses the same communication data structure as `Agent`, but requires the content of input `AgentMessage` to be a dict containing:
+
+- `name`: tool name, e.g. `'IPythonInterpreter'`, `'WebBrowser.search'`.
+- `parameters`: keyword arguments of the tool API, e.g. `{'command': 'import math;math.sqrt(2)'}`, `{'query': ['recent progress in AI']}`.
+
+You can register custom hooks for message conversion.
+
+```python
+from lagent.hooks import Hook
+from lagent.schema import ActionReturn, ActionStatusCode, AgentMessage
+from lagent.actions import ActionExecutor, IPythonInteractive
+
+class CodeProcessor(Hook):
+ def before_action(self, executor, message, session_id):
+ message = message.copy(deep=True)
+ message.content = dict(
+ name='IPythonInteractive', parameters={'command': message.formatted['action']}
+ )
+ return message
+
+ def after_action(self, executor, message, session_id):
+ action_return = message.content
+ if isinstance(action_return, ActionReturn):
+ if action_return.state == ActionStatusCode.SUCCESS:
+ response = action_return.format_result()
+ else:
+ response = action_return.errmsg
+ else:
+ response = action_return
+ message.content = response
+ return message
+
+executor = ActionExecutor(actions=[IPythonInteractive()], hooks=[CodeProcessor()])
+bot_msg = AgentMessage(
+ sender='Agent',
+ content='首先,我们需要...',
+ formatted={
+ 'tool_type': 'code interpreter',
+ 'thought': '首先,我们需要...',
+ 'action': 'def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)',
+ 'status': 1
+ })
+executor_msg = executor(bot_msg)
+print(executor_msg)
+```
+
+```
+content='3969.0' sender='ActionExecutor' formatted=None extra_info=None type=None receiver=None stream_state=
+```
+
+**For convenience, Lagent provides `InternLMActionProcessor` which is adapted to messages formatted by `ToolParser` as mentioned above.**
+
+### Dual Interfaces
+
+Lagent adopts dual interface design, where almost every component(LLMs, actions, action executors...) has the corresponding asynchronous variant by prefixing its identifier with 'Async'. It is recommended to use synchronous agents for debugging and asynchronous ones for large-scale inference to make the most of idle CPU and GPU resources.
+
+However, make sure the internal consistency of agents, i.e. asynchronous agents should be equipped with asynchronous LLMs and asynchronous action executors that drive asynchronous tools.
+
+```python
+from lagent.llms import VllmModel, AsyncVllmModel, LMDeployPipeline, AsyncLMDeployPipeline
+from lagent.actions import ActionExecutor, AsyncActionExecutor, WebBrowser, AsyncWebBrowser
+from lagent.agents import Agent, AsyncAgent, AgentForInternLM, AsyncAgentForInternLM
+```
+
+______________________________________________________________________
+
+## Practice
+
+- **Try to implement `forward` instead of `__call__` of subclasses unless necessary.**
+- **Always include the `session_id` argument explicitly, which is designed for isolation of memory, LLM requests and tool invocation(e.g. maintain multiple independent IPython environments) in concurrency.**
+
+### Single Agent
+
+Math agents that solve problems by programming
+
+````python
+from lagent.agents.aggregator import InternLMToolAggregator
+
+class Coder(Agent):
+ def __init__(self, model_path, system_prompt, max_turn=3):
+ super().__init__()
+ llm = VllmModel(
+ path=model_path,
+ meta_template=INTERNLM2_META,
+ tp=1,
+ top_k=1,
+ temperature=1.0,
+ stop_words=['\n```\n', '<|im_end|>'],
+ max_new_tokens=1024,
+ )
+ self.agent = Agent(
+ llm,
+ system_prompt,
+ output_format=ToolParser(
+ tool_type='code interpreter', begin='```python\n', end='\n```\n'
+ ),
+ # `InternLMToolAggregator` is adapted to `ToolParser` for aggregating
+ # messages with tool invocations and execution results
+ aggregator=InternLMToolAggregator(),
+ )
+ self.executor = ActionExecutor([IPythonInteractive()], hooks=[CodeProcessor()])
+ self.max_turn = max_turn
+
+ def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = self.agent(message, session_id=session_id)
+ if message.formatted['tool_type'] is None:
+ return message
+ message = self.executor(message, session_id=session_id)
+ return message
+
+coder = Coder('Qwen/Qwen2-7B-Instruct', 'Solve the problem step by step with assistance of Python code')
+query = AgentMessage(
+ sender='user',
+ content='Find the projection of $\\mathbf{a}$ onto $\\mathbf{b} = '
+ '\\begin{pmatrix} 1 \\\\ -3 \\end{pmatrix}$ if $\\mathbf{a} \\cdot \\mathbf{b} = 2.$'
+)
+answer = coder(query)
+print(answer.content)
+print('-' * 120)
+for msg in coder.state_dict()['agent.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+````
+
+### Multiple Agents
+
+Asynchronous blogging agents that improve writing quality by self-refinement ([original AutoGen example](https://microsoft.github.io/autogen/0.2/docs/topics/prompting-and-reasoning/reflection/))
+
+```python
+import asyncio
+import os
+from lagent.llms import AsyncGPTAPI
+from lagent.agents import AsyncAgent
+os.environ['OPENAI_API_KEY'] = 'YOUR_API_KEY'
+
+class PrefixedMessageHook(Hook):
+ def __init__(self, prefix: str, senders: list = None):
+ self.prefix = prefix
+ self.senders = senders or []
+
+ def before_agent(self, agent, messages, session_id):
+ for message in messages:
+ if message.sender in self.senders:
+ message.content = self.prefix + message.content
+
+class AsyncBlogger(AsyncAgent):
+ def __init__(self, model_path, writer_prompt, critic_prompt, critic_prefix='', max_turn=3):
+ super().__init__()
+ llm = AsyncGPTAPI(model_type=model_path, retry=5, max_new_tokens=2048)
+ self.writer = AsyncAgent(llm, writer_prompt, name='writer')
+ self.critic = AsyncAgent(
+ llm, critic_prompt, name='critic', hooks=[PrefixedMessageHook(critic_prefix, ['writer'])]
+ )
+ self.max_turn = max_turn
+
+ async def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = await self.writer(message, session_id=session_id)
+ message = await self.critic(message, session_id=session_id)
+ return await self.writer(message, session_id=session_id)
+
+blogger = AsyncBlogger(
+ 'gpt-4o-2024-05-13',
+ writer_prompt="You are an writing assistant tasked to write engaging blogpost. You try to generate the best blogpost possible for the user's request. "
+ "If the user provides critique, then respond with a revised version of your previous attempts",
+ critic_prompt="Generate critique and recommendations on the writing. Provide detailed recommendations, including requests for length, depth, style, etc..",
+ critic_prefix='Reflect and provide critique on the following writing. \n\n',
+)
+user_prompt = (
+ "Write an engaging blogpost on the recent updates in {topic}. "
+ "The blogpost should be engaging and understandable for general audience. "
+ "Should have more than 3 paragraphes but no longer than 1000 words.")
+bot_msgs = asyncio.get_event_loop().run_until_complete(
+ asyncio.gather(
+ *[
+ blogger(AgentMessage(sender='user', content=user_prompt.format(topic=topic)), session_id=i)
+ for i, topic in enumerate(['AI', 'Biotechnology', 'New Energy', 'Video Games', 'Pop Music'])
+ ]
+ )
+)
+print(bot_msgs[0].content)
+print('-' * 120)
+for msg in blogger.state_dict(session_id=0)['writer.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+print('-' * 120)
+for msg in blogger.state_dict(session_id=0)['critic.memory']:
+ print('*' * 80)
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
+```
+
+A multi-agent workflow that performs information retrieval, data collection and chart plotting ([original LangGraph example](https://vijaykumarkartha.medium.com/multiple-ai-agents-creating-multi-agent-workflows-using-langgraph-and-langchain-0587406ec4e6))
+
+
+
+
+
+````python
+import json
+from lagent.actions import IPythonInterpreter, WebBrowser, ActionExecutor
+from lagent.agents.stream import get_plugin_prompt
+from lagent.llms import GPTAPI
+from lagent.hooks import InternLMActionProcessor
+
+TOOL_TEMPLATE = (
+ "You are a helpful AI assistant, collaborating with other assistants. Use the provided tools to progress"
+ " towards answering the question. If you are unable to fully answer, that's OK, another assistant with"
+ " different tools will help where you left off. Execute what you can to make progress. If you or any of"
+ " the other assistants have the final answer or deliverable, prefix your response with {finish_pattern}"
+ " so the team knows to stop. You have access to the following tools:\n{tool_description}\nPlease provide"
+ " your thought process when you need to use a tool, followed by the call statement in this format:"
+ "\n{invocation_format}\\\\n**{system_prompt}**"
+)
+
+class DataVisualizer(Agent):
+ def __init__(self, model_path, research_prompt, chart_prompt, finish_pattern="Final Answer", max_turn=10):
+ super().__init__()
+ llm = GPTAPI(model_path, key='YOUR_OPENAI_API_KEY', retry=5, max_new_tokens=1024, stop_words=["```\n"])
+ interpreter, browser = IPythonInterpreter(), WebBrowser("BingSearch", api_key="YOUR_BING_API_KEY")
+ self.researcher = Agent(
+ llm,
+ TOOL_TEMPLATE.format(
+ finish_pattern=finish_pattern,
+ tool_description=get_plugin_prompt(browser),
+ invocation_format='```json\n{"name": {{tool name}}, "parameters": {{keyword arguments}}}\n```\n',
+ system_prompt=research_prompt,
+ ),
+ output_format=ToolParser(
+ "browser",
+ begin="```json\n",
+ end="\n```\n",
+ validate=lambda x: json.loads(x.rstrip('`')),
+ ),
+ aggregator=InternLMToolAggregator(),
+ name="researcher",
+ )
+ self.charter = Agent(
+ llm,
+ TOOL_TEMPLATE.format(
+ finish_pattern=finish_pattern,
+ tool_description=interpreter.name,
+ invocation_format='```python\n{{code}}\n```\n',
+ system_prompt=chart_prompt,
+ ),
+ output_format=ToolParser(
+ "interpreter",
+ begin="```python\n",
+ end="\n```\n",
+ validate=lambda x: x.rstrip('`'),
+ ),
+ aggregator=InternLMToolAggregator(),
+ name="charter",
+ )
+ self.executor = ActionExecutor([interpreter, browser], hooks=[InternLMActionProcessor()])
+ self.finish_pattern = finish_pattern
+ self.max_turn = max_turn
+
+ def forward(self, message, session_id=0):
+ for _ in range(self.max_turn):
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"]) # override llm stop words
+ while message.formatted["tool_type"]:
+ message = self.executor(message, session_id=session_id)
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"])
+ if self.finish_pattern in message.content:
+ return message
+ message = self.charter(message)
+ while message.formatted["tool_type"]:
+ message = self.executor(message, session_id=session_id)
+ message = self.charter(message, session_id=session_id)
+ if self.finish_pattern in message.content:
+ return message
+ return message
+
+visualizer = DataVisualizer(
+ "gpt-4o-2024-05-13",
+ research_prompt="You should provide accurate data for the chart generator to use.",
+ chart_prompt="Any charts you display will be visible by the user.",
+)
+user_msg = AgentMessage(
+ sender='user',
+ content="Fetch the China's GDP over the past 5 years, then draw a line graph of it. Once you code it up, finish.")
+bot_msg = visualizer(user_msg)
+print(bot_msg.content)
+json.dump(visualizer.state_dict(), open('visualizer.json', 'w'), ensure_ascii=False, indent=4)
+````
+
+## Citation
+
+If you find this project useful in your research, please consider cite:
+
+```latex
+@misc{lagent2023,
+ title={{Lagent: InternLM} a lightweight open-source framework that allows users to efficiently build large language model(LLM)-based agents},
+ author={Lagent Developer Team},
+ howpublished = {\url{https://github.com/InternLM/lagent}},
+ year={2023}
+}
+```
+
+## License
+
+This project is released under the [Apache 2.0 license](LICENSE).
+
+🔼 Back to top
diff --git a/lagent.egg-info/SOURCES.txt b/lagent.egg-info/SOURCES.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7c2d07daed3cc5f3d3c344a618941479237907eb
--- /dev/null
+++ b/lagent.egg-info/SOURCES.txt
@@ -0,0 +1,71 @@
+LICENSE
+MANIFEST.in
+README.md
+setup.cfg
+setup.py
+lagent/__init__.py
+lagent/schema.py
+lagent/version.py
+lagent.egg-info/PKG-INFO
+lagent.egg-info/SOURCES.txt
+lagent.egg-info/dependency_links.txt
+lagent.egg-info/requires.txt
+lagent.egg-info/top_level.txt
+lagent/actions/__init__.py
+lagent/actions/action_executor.py
+lagent/actions/arxiv_search.py
+lagent/actions/base_action.py
+lagent/actions/bing_map.py
+lagent/actions/builtin_actions.py
+lagent/actions/google_scholar_search.py
+lagent/actions/google_search.py
+lagent/actions/ipython_interactive.py
+lagent/actions/ipython_interpreter.py
+lagent/actions/ipython_manager.py
+lagent/actions/parser.py
+lagent/actions/ppt.py
+lagent/actions/python_interpreter.py
+lagent/actions/web_browser.py
+lagent/agents/__init__.py
+lagent/agents/agent.py
+lagent/agents/react.py
+lagent/agents/stream.py
+lagent/agents/aggregator/__init__.py
+lagent/agents/aggregator/default_aggregator.py
+lagent/agents/aggregator/tool_aggregator.py
+lagent/distributed/__init__.py
+lagent/distributed/http_serve/__init__.py
+lagent/distributed/http_serve/api_server.py
+lagent/distributed/http_serve/app.py
+lagent/distributed/ray_serve/__init__.py
+lagent/distributed/ray_serve/ray_warpper.py
+lagent/hooks/__init__.py
+lagent/hooks/action_preprocessor.py
+lagent/hooks/hook.py
+lagent/hooks/logger.py
+lagent/llms/__init__.py
+lagent/llms/base_api.py
+lagent/llms/base_llm.py
+lagent/llms/huggingface.py
+lagent/llms/lmdeploy_wrapper.py
+lagent/llms/meta_template.py
+lagent/llms/openai.py
+lagent/llms/sensenova.py
+lagent/llms/vllm_wrapper.py
+lagent/memory/__init__.py
+lagent/memory/base_memory.py
+lagent/memory/manager.py
+lagent/prompts/__init__.py
+lagent/prompts/prompt_template.py
+lagent/prompts/parsers/__init__.py
+lagent/prompts/parsers/custom_parser.py
+lagent/prompts/parsers/json_parser.py
+lagent/prompts/parsers/str_parser.py
+lagent/prompts/parsers/tool_parser.py
+lagent/utils/__init__.py
+lagent/utils/gen_key.py
+lagent/utils/package.py
+lagent/utils/util.py
+requirements/docs.txt
+requirements/optional.txt
+requirements/runtime.txt
\ No newline at end of file
diff --git a/lagent.egg-info/dependency_links.txt b/lagent.egg-info/dependency_links.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc
--- /dev/null
+++ b/lagent.egg-info/dependency_links.txt
@@ -0,0 +1 @@
+
diff --git a/lagent.egg-info/requires.txt b/lagent.egg-info/requires.txt
new file mode 100644
index 0000000000000000000000000000000000000000..cfd987460eac9660713576d83741d17b3022d711
--- /dev/null
+++ b/lagent.egg-info/requires.txt
@@ -0,0 +1,59 @@
+aiohttp
+arxiv
+asyncache
+asyncer
+distro
+duckduckgo_search==5.3.1b1
+filelock
+func_timeout
+griffe<1.0
+json5
+jsonschema
+jupyter==1.0.0
+jupyter_client==8.6.2
+jupyter_core==5.7.2
+pydantic==2.6.4
+requests
+termcolor
+tiktoken
+timeout-decorator
+typing-extensions
+
+[all]
+google-search-results
+lmdeploy>=0.2.5
+pillow
+python-pptx
+timeout_decorator
+torch
+transformers<=4.40,>=4.34
+vllm>=0.3.3
+aiohttp
+arxiv
+asyncache
+asyncer
+distro
+duckduckgo_search==5.3.1b1
+filelock
+func_timeout
+griffe<1.0
+json5
+jsonschema
+jupyter==1.0.0
+jupyter_client==8.6.2
+jupyter_core==5.7.2
+pydantic==2.6.4
+requests
+termcolor
+tiktoken
+typing-extensions
+
+[optional]
+google-search-results
+lmdeploy>=0.2.5
+pillow
+python-pptx
+timeout_decorator
+torch
+transformers<=4.40,>=4.34
+vllm>=0.3.3
diff --git a/lagent.egg-info/top_level.txt b/lagent.egg-info/top_level.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9273dc63a1927785084010f14533cbb6197c40d7
--- /dev/null
+++ b/lagent.egg-info/top_level.txt
@@ -0,0 +1 @@
+lagent
diff --git a/lagent/__init__.py b/lagent/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9e7b4a71d5a54e4f6a3bff362dfa29016277be4e
--- /dev/null
+++ b/lagent/__init__.py
@@ -0,0 +1,4 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from .version import __version__, version_info
+
+__all__ = ['__version__', 'version_info']
diff --git a/lagent/__pycache__/__init__.cpython-310.pyc b/lagent/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..095a780dc7e6b152ce802b8e96aae0238cc1be4e
Binary files /dev/null and b/lagent/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/__pycache__/schema.cpython-310.pyc b/lagent/__pycache__/schema.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4a984d49053b5a08c816567bd12392fe07078384
Binary files /dev/null and b/lagent/__pycache__/schema.cpython-310.pyc differ
diff --git a/lagent/__pycache__/version.cpython-310.pyc b/lagent/__pycache__/version.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..42e40cf93fec91731019bce85dc24a2f18af9d25
Binary files /dev/null and b/lagent/__pycache__/version.cpython-310.pyc differ
diff --git a/lagent/actions/.ipynb_checkpoints/__init__-checkpoint.py b/lagent/actions/.ipynb_checkpoints/__init__-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..42f23b00dd5c60739da6912c86af55d534fc4050
--- /dev/null
+++ b/lagent/actions/.ipynb_checkpoints/__init__-checkpoint.py
@@ -0,0 +1,26 @@
+from .action_executor import ActionExecutor, AsyncActionExecutor
+from .arxiv_search import ArxivSearch, AsyncArxivSearch
+from .base_action import BaseAction, tool_api
+from .bing_map import AsyncBINGMap, BINGMap
+from .builtin_actions import FinishAction, InvalidAction, NoAction
+from .google_scholar_search import AsyncGoogleScholar, GoogleScholar
+from .google_search import AsyncGoogleSearch, GoogleSearch
+from .ipython_interactive import AsyncIPythonInteractive, IPythonInteractive
+from .ipython_interpreter import AsyncIPythonInterpreter, IPythonInterpreter
+from .ipython_manager import IPythonInteractiveManager
+from .parser import BaseParser, JsonParser, TupleParser
+from .ppt import PPT, AsyncPPT
+from .python_interpreter import AsyncPythonInterpreter, PythonInterpreter
+from .web_browser import AsyncWebBrowser, WebBrowser
+from .weather_query import WeatherQuery
+
+__all__ = [
+ 'BaseAction', 'ActionExecutor', 'AsyncActionExecutor', 'InvalidAction',
+ 'FinishAction', 'NoAction', 'BINGMap', 'AsyncBINGMap', 'ArxivSearch',
+ 'AsyncArxivSearch', 'GoogleSearch', 'AsyncGoogleSearch', 'GoogleScholar',
+ 'AsyncGoogleScholar', 'IPythonInterpreter', 'AsyncIPythonInterpreter',
+ 'IPythonInteractive', 'AsyncIPythonInteractive',
+ 'IPythonInteractiveManager', 'PythonInterpreter', 'AsyncPythonInterpreter',
+ 'PPT', 'AsyncPPT', 'WebBrowser', 'AsyncWebBrowser', 'BaseParser',
+ 'JsonParser', 'TupleParser', 'tool_api','WeatherQuery'
+]
diff --git a/lagent/actions/.ipynb_checkpoints/arxiv_search-checkpoint.py b/lagent/actions/.ipynb_checkpoints/arxiv_search-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..43ba7c056fa583054d17eb2b6661b37fab41de6f
--- /dev/null
+++ b/lagent/actions/.ipynb_checkpoints/arxiv_search-checkpoint.py
@@ -0,0 +1,79 @@
+from typing import Optional, Type
+
+from asyncer import asyncify
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.actions.parser import BaseParser, JsonParser
+from lagent.schema import ActionReturn, ActionStatusCode
+
+
+class ArxivSearch(BaseAction):
+ """Search information from Arxiv.org. \
+Useful for when you need to answer questions about Physics, Mathematics, \
+Computer Science, Quantitative Biology, Quantitative Finance, Statistics, \
+Electrical Engineering, and Economics from scientific articles on arxiv.org.
+ """
+
+ def __init__(
+ self,
+ top_k_results: int = 3,
+ max_query_len: int = 300,
+ doc_content_chars_max: int = 1500,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+ self.top_k_results = top_k_results
+ self.max_query_len = max_query_len
+ self.doc_content_chars_max = doc_content_chars_max
+
+ @tool_api(explode_return=True)
+ def get_arxiv_article_information(self, query: str) -> dict:
+ """Run Arxiv search and get the article meta information.
+
+ Args:
+ query (:class:`str`): the content of search query
+
+ Returns:
+ :class:`dict`: article information
+ * content (str): a list of 3 arxiv search papers
+ """
+ import arxiv
+
+ try:
+ results = arxiv.Search( # type: ignore
+ query[: self.max_query_len], max_results=self.top_k_results
+ ).results()
+ except Exception as exc:
+ return ActionReturn(errmsg=f'Arxiv exception: {exc}', state=ActionStatusCode.HTTP_ERROR)
+ docs = [
+ f'Published: {result.updated.date()}\nTitle: {result.title}\n'
+ f'Authors: {", ".join(a.name for a in result.authors)}\n'
+ f'Summary: {result.summary[:self.doc_content_chars_max]}'
+ for result in results
+ ]
+ if docs:
+ return {'content': '\n\n'.join(docs)}
+ return {'content': 'No good Arxiv Result was found'}
+
+
+class AsyncArxivSearch(AsyncActionMixin, ArxivSearch):
+ """Search information from Arxiv.org. \
+Useful for when you need to answer questions about Physics, Mathematics, \
+Computer Science, Quantitative Biology, Quantitative Finance, Statistics, \
+Electrical Engineering, and Economics from scientific articles on arxiv.org.
+ """
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def get_arxiv_article_information(self, query: str) -> dict:
+ """Run Arxiv search and get the article meta information.
+
+ Args:
+ query (:class:`str`): the content of search query
+
+ Returns:
+ :class:`dict`: article information
+ * content (str): a list of 3 arxiv search papers
+ """
+ return super().get_arxiv_article_information(query)
diff --git a/lagent/actions/.ipynb_checkpoints/weather_query-checkpoint.py b/lagent/actions/.ipynb_checkpoints/weather_query-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbe3e991dbca34e0a6d373d62d457c7237317741
--- /dev/null
+++ b/lagent/actions/.ipynb_checkpoints/weather_query-checkpoint.py
@@ -0,0 +1,71 @@
+import os
+import requests
+from lagent.actions.base_action import BaseAction, tool_api
+from lagent.schema import ActionReturn, ActionStatusCode
+
+class WeatherQuery(BaseAction):
+ def __init__(self):
+ super().__init__()
+ self.api_key = os.getenv("weather_token")
+ print(self.api_key)
+ if not self.api_key:
+ raise EnvironmentError("未找到环境变量 'token'。请设置你的和风天气 API Key 到 'weather_token' 环境变量中,比如export weather_token='xxx' ")
+
+ @tool_api
+ def run(self, location: str) -> dict:
+ """
+ 查询实时天气信息。
+
+ Args:
+ location (str): 要查询的地点名称、LocationID 或经纬度坐标(如 "101010100" 或 "116.41,39.92")。
+
+ Returns:
+ dict: 包含天气信息的字典
+ * location: 地点名称
+ * weather: 天气状况
+ * temperature: 当前温度
+ * wind_direction: 风向
+ * wind_speed: 风速(公里/小时)
+ * humidity: 相对湿度(%)
+ * report_time: 数据报告时间
+ """
+ try:
+ # 如果 location 不是坐标格式(例如 "116.41,39.92"),则调用 GeoAPI 获取 LocationID
+ if not ("," in location and location.replace(",", "").replace(".", "").isdigit()):
+ # 使用 GeoAPI 获取 LocationID
+ geo_url = f"https://geoapi.qweather.com/v2/city/lookup?location={location}&key={self.api_key}"
+ geo_response = requests.get(geo_url)
+ geo_data = geo_response.json()
+
+ if geo_data.get("code") != "200" or not geo_data.get("location"):
+ raise Exception(f"GeoAPI 返回错误码:{geo_data.get('code')} 或未找到位置")
+
+ location = geo_data["location"][0]["id"]
+
+ # 构建天气查询的 API 请求 URL
+ weather_url = f"https://devapi.qweather.com/v7/weather/now?location={location}&key={self.api_key}"
+ response = requests.get(weather_url)
+ data = response.json()
+
+ # 检查 API 响应码
+ if data.get("code") != "200":
+ raise Exception(f"Weather API 返回错误码:{data.get('code')}")
+
+ # 解析和组织天气信息
+ weather_info = {
+ "location": location,
+ "weather": data["now"]["text"],
+ "temperature": data["now"]["temp"] + "°C",
+ "wind_direction": data["now"]["windDir"],
+ "wind_speed": data["now"]["windSpeed"] + " km/h",
+ "humidity": data["now"]["humidity"] + "%",
+ "report_time": data["updateTime"]
+ }
+
+ return {"result": weather_info}
+
+ except Exception as exc:
+ return ActionReturn(
+ errmsg=f"WeatherQuery 异常:{exc}",
+ state=ActionStatusCode.HTTP_ERROR
+ )
\ No newline at end of file
diff --git a/lagent/actions/__init__.py b/lagent/actions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..42f23b00dd5c60739da6912c86af55d534fc4050
--- /dev/null
+++ b/lagent/actions/__init__.py
@@ -0,0 +1,26 @@
+from .action_executor import ActionExecutor, AsyncActionExecutor
+from .arxiv_search import ArxivSearch, AsyncArxivSearch
+from .base_action import BaseAction, tool_api
+from .bing_map import AsyncBINGMap, BINGMap
+from .builtin_actions import FinishAction, InvalidAction, NoAction
+from .google_scholar_search import AsyncGoogleScholar, GoogleScholar
+from .google_search import AsyncGoogleSearch, GoogleSearch
+from .ipython_interactive import AsyncIPythonInteractive, IPythonInteractive
+from .ipython_interpreter import AsyncIPythonInterpreter, IPythonInterpreter
+from .ipython_manager import IPythonInteractiveManager
+from .parser import BaseParser, JsonParser, TupleParser
+from .ppt import PPT, AsyncPPT
+from .python_interpreter import AsyncPythonInterpreter, PythonInterpreter
+from .web_browser import AsyncWebBrowser, WebBrowser
+from .weather_query import WeatherQuery
+
+__all__ = [
+ 'BaseAction', 'ActionExecutor', 'AsyncActionExecutor', 'InvalidAction',
+ 'FinishAction', 'NoAction', 'BINGMap', 'AsyncBINGMap', 'ArxivSearch',
+ 'AsyncArxivSearch', 'GoogleSearch', 'AsyncGoogleSearch', 'GoogleScholar',
+ 'AsyncGoogleScholar', 'IPythonInterpreter', 'AsyncIPythonInterpreter',
+ 'IPythonInteractive', 'AsyncIPythonInteractive',
+ 'IPythonInteractiveManager', 'PythonInterpreter', 'AsyncPythonInterpreter',
+ 'PPT', 'AsyncPPT', 'WebBrowser', 'AsyncWebBrowser', 'BaseParser',
+ 'JsonParser', 'TupleParser', 'tool_api','WeatherQuery'
+]
diff --git a/lagent/actions/__pycache__/__init__.cpython-310.pyc b/lagent/actions/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..32713b345fac0da7eacc72ef50d5a5251b8829ab
Binary files /dev/null and b/lagent/actions/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/action_executor.cpython-310.pyc b/lagent/actions/__pycache__/action_executor.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f0190dceb7620cc1975bbcd10ffbc34c0bf46c4d
Binary files /dev/null and b/lagent/actions/__pycache__/action_executor.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/arxiv_search.cpython-310.pyc b/lagent/actions/__pycache__/arxiv_search.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c342047b050d185a17b57342c4394cfc51765e02
Binary files /dev/null and b/lagent/actions/__pycache__/arxiv_search.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/base_action.cpython-310.pyc b/lagent/actions/__pycache__/base_action.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..748ccd7cffcbe2a93f5805203dde96c216057ed9
Binary files /dev/null and b/lagent/actions/__pycache__/base_action.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/bing_map.cpython-310.pyc b/lagent/actions/__pycache__/bing_map.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5c1baeb5f0f5ef0674ba343b6e11c2729f3f0fae
Binary files /dev/null and b/lagent/actions/__pycache__/bing_map.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/builtin_actions.cpython-310.pyc b/lagent/actions/__pycache__/builtin_actions.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..029f48c112d1b0870c1ffd549955ff086d7cd041
Binary files /dev/null and b/lagent/actions/__pycache__/builtin_actions.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/google_scholar_search.cpython-310.pyc b/lagent/actions/__pycache__/google_scholar_search.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ddd1d055df73706c9605011428952ac4ae79c39c
Binary files /dev/null and b/lagent/actions/__pycache__/google_scholar_search.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/google_search.cpython-310.pyc b/lagent/actions/__pycache__/google_search.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..10bd75f76f88d7a2947709b73ed8ba6183d9e411
Binary files /dev/null and b/lagent/actions/__pycache__/google_search.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/ipython_interactive.cpython-310.pyc b/lagent/actions/__pycache__/ipython_interactive.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a7db238d7af30921eb6aee349ac1a4bd9db886b2
Binary files /dev/null and b/lagent/actions/__pycache__/ipython_interactive.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/ipython_interpreter.cpython-310.pyc b/lagent/actions/__pycache__/ipython_interpreter.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..13ffc30d704e98f53b8cab3c30790ffcfc74d8d7
Binary files /dev/null and b/lagent/actions/__pycache__/ipython_interpreter.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/ipython_manager.cpython-310.pyc b/lagent/actions/__pycache__/ipython_manager.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5fcc1ce1225fd7fc00a1e7efd28604b20be269cc
Binary files /dev/null and b/lagent/actions/__pycache__/ipython_manager.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/parser.cpython-310.pyc b/lagent/actions/__pycache__/parser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ba9acea8f5ce86c335bc9212a09bd1a0c8ddb06d
Binary files /dev/null and b/lagent/actions/__pycache__/parser.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/ppt.cpython-310.pyc b/lagent/actions/__pycache__/ppt.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1e2e3a71f7d6d3b451908ea311fb75f25f3b82bc
Binary files /dev/null and b/lagent/actions/__pycache__/ppt.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/python_interpreter.cpython-310.pyc b/lagent/actions/__pycache__/python_interpreter.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bbc01a57d3e1c847d3f51539f24f0022d6de7765
Binary files /dev/null and b/lagent/actions/__pycache__/python_interpreter.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/weather_query.cpython-310.pyc b/lagent/actions/__pycache__/weather_query.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f466d798be8b861fb39d73e381a34fff17334613
Binary files /dev/null and b/lagent/actions/__pycache__/weather_query.cpython-310.pyc differ
diff --git a/lagent/actions/__pycache__/web_browser.cpython-310.pyc b/lagent/actions/__pycache__/web_browser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a61e8add2b4c5a568ac426d242d06940f8f90abb
Binary files /dev/null and b/lagent/actions/__pycache__/web_browser.cpython-310.pyc differ
diff --git a/lagent/actions/action_executor.py b/lagent/actions/action_executor.py
new file mode 100644
index 0000000000000000000000000000000000000000..e28f32d57766be5d3c54da5fb0db7c0cc5a918ae
--- /dev/null
+++ b/lagent/actions/action_executor.py
@@ -0,0 +1,198 @@
+import inspect
+from collections import OrderedDict
+from typing import Callable, Dict, List, Union
+
+from lagent.actions.base_action import BaseAction
+from lagent.actions.builtin_actions import FinishAction, InvalidAction, NoAction
+from lagent.hooks import Hook, RemovableHandle
+from lagent.schema import ActionReturn, ActionValidCode, AgentMessage, FunctionCall
+from lagent.utils import create_object
+
+
+class ActionExecutor:
+ """The action executor class.
+
+ Args:
+ actions (Union[BaseAction, List[BaseAction]]): The action or actions.
+ invalid_action (BaseAction, optional): The invalid action. Defaults to
+ InvalidAction().
+ no_action (BaseAction, optional): The no action.
+ Defaults to NoAction().
+ finish_action (BaseAction, optional): The finish action. Defaults to
+ FinishAction().
+ finish_in_action (bool, optional): Whether the finish action is in the
+ action list. Defaults to False.
+ """
+
+ def __init__(
+ self,
+ actions: Union[BaseAction, List[BaseAction], Dict, List[Dict]],
+ invalid_action: BaseAction = dict(type=InvalidAction),
+ no_action: BaseAction = dict(type=NoAction),
+ finish_action: BaseAction = dict(type=FinishAction),
+ finish_in_action: bool = False,
+ hooks: List[Dict] = None,
+ ):
+
+ if not isinstance(actions, list):
+ actions = [actions]
+ finish_action = create_object(finish_action)
+ if finish_in_action:
+ actions.append(finish_action)
+ for i, action in enumerate(actions):
+ actions[i] = create_object(action)
+ self.actions = {action.name: action for action in actions}
+
+ self.invalid_action = create_object(invalid_action)
+ self.no_action = create_object(no_action)
+ self.finish_action = finish_action
+ self._hooks: Dict[int, Hook] = OrderedDict()
+ if hooks:
+ for hook in hooks:
+ hook = create_object(hook)
+ self.register_hook(hook)
+
+ def description(self) -> List[Dict]:
+ actions = []
+ for action_name, action in self.actions.items():
+ if action.is_toolkit:
+ for api in action.description['api_list']:
+ api_desc = api.copy()
+ api_desc['name'] = f"{action_name}.{api_desc['name']}"
+ actions.append(api_desc)
+ else:
+ action_desc = action.description.copy()
+ actions.append(action_desc)
+ return actions
+
+ def __contains__(self, name: str):
+ return name in self.actions
+
+ def keys(self):
+ return list(self.actions.keys())
+
+ def __setitem__(self, name: str, action: Union[BaseAction, Dict]):
+ action = create_object(action)
+ self.actions[action.name] = action
+
+ def __delitem__(self, name: str):
+ del self.actions[name]
+
+ def forward(self, name, parameters, **kwargs) -> ActionReturn:
+ action_name, api_name = (
+ name.split('.') if '.' in name else (name, 'run'))
+ action_return: ActionReturn = ActionReturn()
+ if action_name not in self:
+ if name == self.no_action.name:
+ action_return = self.no_action(parameters)
+ elif name == self.finish_action.name:
+ action_return = self.finish_action(parameters)
+ else:
+ action_return = self.invalid_action(parameters)
+ else:
+ action_return = self.actions[action_name](parameters, api_name)
+ action_return.valid = ActionValidCode.OPEN
+ return action_return
+
+ def __call__(self,
+ message: AgentMessage,
+ session_id=0,
+ **kwargs) -> AgentMessage:
+ # message.receiver = self.name
+ for hook in self._hooks.values():
+ result = hook.before_action(self, message, session_id)
+ if result:
+ message = result
+
+ assert isinstance(message.content, FunctionCall) or (
+ isinstance(message.content, dict) and 'name' in message.content
+ and 'parameters' in message.content)
+ if isinstance(message.content, dict):
+ name = message.content.get('name')
+ parameters = message.content.get('parameters')
+ else:
+ name = message.content.name
+ parameters = message.content.parameters
+
+ response_message = self.forward(
+ name=name, parameters=parameters, **kwargs)
+ if not isinstance(response_message, AgentMessage):
+ response_message = AgentMessage(
+ sender=self.__class__.__name__,
+ content=response_message,
+ )
+
+ for hook in self._hooks.values():
+ result = hook.after_action(self, response_message, session_id)
+ if result:
+ response_message = result
+ return response_message
+
+ def register_hook(self, hook: Callable):
+ handle = RemovableHandle(self._hooks)
+ self._hooks[handle.id] = hook
+ return handle
+
+
+class AsyncActionExecutor(ActionExecutor):
+
+ async def forward(self, name, parameters, **kwargs) -> ActionReturn:
+ action_name, api_name = (
+ name.split('.') if '.' in name else (name, 'run'))
+ action_return: ActionReturn = ActionReturn()
+ if action_name not in self:
+ if name == self.no_action.name:
+ action_return = self.no_action(parameters)
+ elif name == self.finish_action.name:
+ action_return = self.finish_action(parameters)
+ else:
+ action_return = self.invalid_action(parameters)
+ else:
+ action = self.actions[action_name]
+ if inspect.iscoroutinefunction(action.__call__):
+ action_return = await action(parameters, api_name)
+ else:
+ action_return = action(parameters, api_name)
+ action_return.valid = ActionValidCode.OPEN
+ return action_return
+
+ async def __call__(self,
+ message: AgentMessage,
+ session_id=0,
+ **kwargs) -> AgentMessage:
+ # message.receiver = self.name
+ for hook in self._hooks.values():
+ if inspect.iscoroutinefunction(hook.before_action):
+ result = await hook.before_action(self, message, session_id)
+ else:
+ result = hook.before_action(self, message, session_id)
+ if result:
+ message = result
+
+ assert isinstance(message.content, FunctionCall) or (
+ isinstance(message.content, dict) and 'name' in message.content
+ and 'parameters' in message.content)
+ if isinstance(message.content, dict):
+ name = message.content.get('name')
+ parameters = message.content.get('parameters')
+ else:
+ name = message.content.name
+ parameters = message.content.parameters
+
+ response_message = await self.forward(
+ name=name, parameters=parameters, **kwargs)
+ if not isinstance(response_message, AgentMessage):
+ response_message = AgentMessage(
+ sender=self.__class__.__name__,
+ content=response_message,
+ )
+
+ for hook in self._hooks.values():
+ if inspect.iscoroutinefunction(hook.after_action):
+ result = await hook.after_action(self, response_message,
+ session_id)
+ else:
+ result = hook.after_action(self, response_message, session_id)
+ if result:
+ response_message = result
+ return response_message
diff --git a/lagent/actions/arxiv_search.py b/lagent/actions/arxiv_search.py
new file mode 100644
index 0000000000000000000000000000000000000000..43ba7c056fa583054d17eb2b6661b37fab41de6f
--- /dev/null
+++ b/lagent/actions/arxiv_search.py
@@ -0,0 +1,79 @@
+from typing import Optional, Type
+
+from asyncer import asyncify
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.actions.parser import BaseParser, JsonParser
+from lagent.schema import ActionReturn, ActionStatusCode
+
+
+class ArxivSearch(BaseAction):
+ """Search information from Arxiv.org. \
+Useful for when you need to answer questions about Physics, Mathematics, \
+Computer Science, Quantitative Biology, Quantitative Finance, Statistics, \
+Electrical Engineering, and Economics from scientific articles on arxiv.org.
+ """
+
+ def __init__(
+ self,
+ top_k_results: int = 3,
+ max_query_len: int = 300,
+ doc_content_chars_max: int = 1500,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+ self.top_k_results = top_k_results
+ self.max_query_len = max_query_len
+ self.doc_content_chars_max = doc_content_chars_max
+
+ @tool_api(explode_return=True)
+ def get_arxiv_article_information(self, query: str) -> dict:
+ """Run Arxiv search and get the article meta information.
+
+ Args:
+ query (:class:`str`): the content of search query
+
+ Returns:
+ :class:`dict`: article information
+ * content (str): a list of 3 arxiv search papers
+ """
+ import arxiv
+
+ try:
+ results = arxiv.Search( # type: ignore
+ query[: self.max_query_len], max_results=self.top_k_results
+ ).results()
+ except Exception as exc:
+ return ActionReturn(errmsg=f'Arxiv exception: {exc}', state=ActionStatusCode.HTTP_ERROR)
+ docs = [
+ f'Published: {result.updated.date()}\nTitle: {result.title}\n'
+ f'Authors: {", ".join(a.name for a in result.authors)}\n'
+ f'Summary: {result.summary[:self.doc_content_chars_max]}'
+ for result in results
+ ]
+ if docs:
+ return {'content': '\n\n'.join(docs)}
+ return {'content': 'No good Arxiv Result was found'}
+
+
+class AsyncArxivSearch(AsyncActionMixin, ArxivSearch):
+ """Search information from Arxiv.org. \
+Useful for when you need to answer questions about Physics, Mathematics, \
+Computer Science, Quantitative Biology, Quantitative Finance, Statistics, \
+Electrical Engineering, and Economics from scientific articles on arxiv.org.
+ """
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def get_arxiv_article_information(self, query: str) -> dict:
+ """Run Arxiv search and get the article meta information.
+
+ Args:
+ query (:class:`str`): the content of search query
+
+ Returns:
+ :class:`dict`: article information
+ * content (str): a list of 3 arxiv search papers
+ """
+ return super().get_arxiv_article_information(query)
diff --git a/lagent/actions/base_action.py b/lagent/actions/base_action.py
new file mode 100644
index 0000000000000000000000000000000000000000..2e546f75bb251c73991fee124c00a222f53bbce5
--- /dev/null
+++ b/lagent/actions/base_action.py
@@ -0,0 +1,434 @@
+import inspect
+import logging
+import re
+from abc import ABCMeta
+from copy import deepcopy
+from functools import wraps
+from typing import Callable, Optional, Type, get_args, get_origin
+
+try:
+ from typing import Annotated
+except ImportError:
+ from typing_extensions import Annotated
+
+from griffe import Docstring
+
+try:
+ from griffe import DocstringSectionKind
+except ImportError:
+ from griffe.enumerations import DocstringSectionKind
+
+from ..schema import ActionReturn, ActionStatusCode
+from .parser import BaseParser, JsonParser, ParseError
+
+logging.getLogger('griffe').setLevel(logging.ERROR)
+
+
+def tool_api(func: Optional[Callable] = None,
+ *,
+ explode_return: bool = False,
+ returns_named_value: bool = False,
+ **kwargs):
+ """Turn functions into tools. It will parse typehints as well as docstrings
+ to build the tool description and attach it to functions via an attribute
+ ``api_description``.
+
+ Examples:
+
+ .. code-block:: python
+
+ # typehints has higher priority than docstrings
+ from typing import Annotated
+
+ @tool_api
+ def add(a: Annotated[int, 'augend'], b: Annotated[int, 'addend'] = 1):
+ '''Add operation
+
+ Args:
+ x (int): a
+ y (int): b
+ '''
+ return a + b
+
+ print(add.api_description)
+
+ Args:
+ func (Optional[Callable]): function to decorate. Defaults to ``None``.
+ explode_return (bool): whether to flatten the dictionary or tuple return
+ as the ``return_data`` field. When enabled, it is recommended to
+ annotate the member in docstrings. Defaults to ``False``.
+
+ .. code-block:: python
+
+ @tool_api(explode_return=True)
+ def foo(a, b):
+ '''A simple function
+
+ Args:
+ a (int): a
+ b (int): b
+
+ Returns:
+ dict: information of inputs
+ * x: value of a
+ * y: value of b
+ '''
+ return {'x': a, 'y': b}
+
+ print(foo.api_description)
+
+ returns_named_value (bool): whether to parse ``thing: Description`` in
+ returns sections as a name and description, rather than a type and
+ description. When true, type must be wrapped in parentheses:
+ ``(int): Description``. When false, parentheses are optional but
+ the items cannot be named: ``int: Description``. Defaults to ``False``.
+
+ Returns:
+ Callable: wrapped function or partial decorator
+
+ Important:
+ ``return_data`` field will be added to ``api_description`` only
+ when ``explode_return`` or ``returns_named_value`` is enabled.
+ """
+
+ def _detect_type(string):
+ field_type = 'STRING'
+ if 'list' in string:
+ field_type = 'Array'
+ elif 'str' not in string:
+ if 'float' in string:
+ field_type = 'FLOAT'
+ elif 'int' in string:
+ field_type = 'NUMBER'
+ elif 'bool' in string:
+ field_type = 'BOOLEAN'
+ return field_type
+
+ def _explode(desc):
+ kvs = []
+ desc = '\nArgs:\n' + '\n'.join([
+ ' ' + item.lstrip(' -+*#.')
+ for item in desc.split('\n')[1:] if item.strip()
+ ])
+ docs = Docstring(desc).parse('google')
+ if not docs:
+ return kvs
+ if docs[0].kind is DocstringSectionKind.parameters:
+ for d in docs[0].value:
+ d = d.as_dict()
+ if not d['annotation']:
+ d.pop('annotation')
+ else:
+ d['type'] = _detect_type(d.pop('annotation').lower())
+ kvs.append(d)
+ return kvs
+
+ def _parse_tool(function):
+ # remove rst syntax
+ docs = Docstring(
+ re.sub(':(.+?):`(.+?)`', '\\2', function.__doc__ or '')).parse(
+ 'google', returns_named_value=returns_named_value, **kwargs)
+ desc = dict(
+ name=function.__name__,
+ description=docs[0].value
+ if docs[0].kind is DocstringSectionKind.text else '',
+ parameters=[],
+ required=[],
+ )
+ args_doc, returns_doc = {}, []
+ for doc in docs:
+ if doc.kind is DocstringSectionKind.parameters:
+ for d in doc.value:
+ d = d.as_dict()
+ d['type'] = _detect_type(d.pop('annotation').lower())
+ args_doc[d['name']] = d
+ if doc.kind is DocstringSectionKind.returns:
+ for d in doc.value:
+ d = d.as_dict()
+ if not d['name']:
+ d.pop('name')
+ if not d['annotation']:
+ d.pop('annotation')
+ else:
+ d['type'] = _detect_type(d.pop('annotation').lower())
+ returns_doc.append(d)
+
+ sig = inspect.signature(function)
+ for name, param in sig.parameters.items():
+ if name == 'self':
+ continue
+ parameter = dict(
+ name=param.name,
+ type='STRING',
+ description=args_doc.get(param.name,
+ {}).get('description', ''))
+ annotation = param.annotation
+ if annotation is inspect.Signature.empty:
+ parameter['type'] = args_doc.get(param.name,
+ {}).get('type', 'STRING')
+ else:
+ if get_origin(annotation) is Annotated:
+ annotation, info = get_args(annotation)
+ if info:
+ parameter['description'] = info
+ while get_origin(annotation):
+ annotation = get_args(annotation)
+ parameter['type'] = _detect_type(str(annotation))
+ desc['parameters'].append(parameter)
+ if param.default is inspect.Signature.empty:
+ desc['required'].append(param.name)
+
+ return_data = []
+ if explode_return:
+ return_data = _explode(returns_doc[0]['description'])
+ elif returns_named_value:
+ return_data = returns_doc
+ if return_data:
+ desc['return_data'] = return_data
+ return desc
+
+ if callable(func):
+
+ if inspect.iscoroutinefunction(func):
+
+ @wraps(func)
+ async def wrapper(self, *args, **kwargs):
+ return await func(self, *args, **kwargs)
+
+ else:
+
+ @wraps(func)
+ def wrapper(self, *args, **kwargs):
+ return func(self, *args, **kwargs)
+
+ wrapper.api_description = _parse_tool(func)
+ return wrapper
+
+ def decorate(func):
+
+ if inspect.iscoroutinefunction(func):
+
+ @wraps(func)
+ async def wrapper(self, *args, **kwargs):
+ return await func(self, *args, **kwargs)
+
+ else:
+
+ @wraps(func)
+ def wrapper(self, *args, **kwargs):
+ return func(self, *args, **kwargs)
+
+ wrapper.api_description = _parse_tool(func)
+ return wrapper
+
+ return decorate
+
+
+class ToolMeta(ABCMeta):
+ """Metaclass of tools."""
+
+ def __new__(mcs, name, base, attrs):
+ is_toolkit, tool_desc = True, dict(
+ name=name,
+ description=Docstring(attrs.get('__doc__',
+ '')).parse('google')[0].value)
+ for key, value in attrs.items():
+ if callable(value) and hasattr(value, 'api_description'):
+ api_desc = getattr(value, 'api_description')
+ if key == 'run':
+ tool_desc['parameters'] = api_desc['parameters']
+ tool_desc['required'] = api_desc['required']
+ if api_desc['description']:
+ tool_desc['description'] = api_desc['description']
+ if api_desc.get('return_data'):
+ tool_desc['return_data'] = api_desc['return_data']
+ is_toolkit = False
+ else:
+ tool_desc.setdefault('api_list', []).append(api_desc)
+ if not is_toolkit and 'api_list' in tool_desc:
+ raise KeyError('`run` and other tool APIs can not be implemented '
+ 'at the same time')
+ if is_toolkit and 'api_list' not in tool_desc:
+ is_toolkit = False
+ if callable(attrs.get('run')):
+ run_api = tool_api(attrs['run'])
+ api_desc = run_api.api_description
+ tool_desc['parameters'] = api_desc['parameters']
+ tool_desc['required'] = api_desc['required']
+ if api_desc['description']:
+ tool_desc['description'] = api_desc['description']
+ if api_desc.get('return_data'):
+ tool_desc['return_data'] = api_desc['return_data']
+ attrs['run'] = run_api
+ else:
+ tool_desc['parameters'], tool_desc['required'] = [], []
+ attrs['_is_toolkit'] = is_toolkit
+ attrs['__tool_description__'] = tool_desc
+ return super().__new__(mcs, name, base, attrs)
+
+
+class BaseAction(metaclass=ToolMeta):
+ """Base class for all actions.
+
+ Args:
+ description (:class:`Optional[dict]`): The description of the action.
+ Defaults to ``None``.
+ parser (:class:`Type[BaseParser]`): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+
+ Examples:
+
+ * simple tool
+
+ .. code-block:: python
+
+ class Bold(BaseAction):
+ '''Make text bold'''
+
+ def run(self, text: str):
+ '''
+ Args:
+ text (str): input text
+
+ Returns:
+ str: bold text
+ '''
+ return '**' + text + '**'
+
+ action = Bold()
+
+ * toolkit with multiple APIs
+
+ .. code-block:: python
+
+ class Calculator(BaseAction):
+ '''Calculator'''
+
+ @tool_api
+ def add(self, a, b):
+ '''Add operation
+
+ Args:
+ a (int): augend
+ b (int): addend
+
+ Returns:
+ int: sum
+ '''
+ return a + b
+
+ @tool_api
+ def sub(self, a, b):
+ '''Subtraction operation
+
+ Args:
+ a (int): minuend
+ b (int): subtrahend
+
+ Returns:
+ int: difference
+ '''
+ return a - b
+
+ action = Calculator()
+ """
+
+ def __init__(
+ self,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ self._description = deepcopy(description or self.__tool_description__)
+ self._name = self._description['name']
+ self._parser = parser(self)
+
+ def __call__(self, inputs: str, name='run') -> ActionReturn:
+ fallback_args = {'inputs': inputs, 'name': name}
+ if not hasattr(self, name):
+ return ActionReturn(
+ fallback_args,
+ type=self.name,
+ errmsg=f'invalid API: {name}',
+ state=ActionStatusCode.API_ERROR)
+ try:
+ inputs = self._parser.parse_inputs(inputs, name)
+ except ParseError as exc:
+ return ActionReturn(
+ fallback_args,
+ type=self.name,
+ errmsg=exc.err_msg,
+ state=ActionStatusCode.ARGS_ERROR)
+ try:
+ outputs = getattr(self, name)(**inputs)
+ except Exception as exc:
+ return ActionReturn(
+ inputs,
+ type=self.name,
+ errmsg=str(exc),
+ state=ActionStatusCode.API_ERROR)
+ if isinstance(outputs, ActionReturn):
+ action_return = outputs
+ if not action_return.args:
+ action_return.args = inputs
+ if not action_return.type:
+ action_return.type = self.name
+ else:
+ result = self._parser.parse_outputs(outputs)
+ action_return = ActionReturn(inputs, type=self.name, result=result)
+ return action_return
+
+ @property
+ def name(self):
+ return self._name
+
+ @property
+ def is_toolkit(self):
+ return self._is_toolkit
+
+ @property
+ def description(self) -> dict:
+ """Description of the tool."""
+ return self._description
+
+ def __repr__(self):
+ return f'{self.description}'
+
+ __str__ = __repr__
+
+
+class AsyncActionMixin:
+
+ async def __call__(self, inputs: str, name='run') -> ActionReturn:
+ fallback_args = {'inputs': inputs, 'name': name}
+ if not hasattr(self, name):
+ return ActionReturn(
+ fallback_args,
+ type=self.name,
+ errmsg=f'invalid API: {name}',
+ state=ActionStatusCode.API_ERROR)
+ try:
+ inputs = self._parser.parse_inputs(inputs, name)
+ except ParseError as exc:
+ return ActionReturn(
+ fallback_args,
+ type=self.name,
+ errmsg=exc.err_msg,
+ state=ActionStatusCode.ARGS_ERROR)
+ try:
+ outputs = await getattr(self, name)(**inputs)
+ except Exception as exc:
+ return ActionReturn(
+ inputs,
+ type=self.name,
+ errmsg=str(exc),
+ state=ActionStatusCode.API_ERROR)
+ if isinstance(outputs, ActionReturn):
+ action_return = outputs
+ if not action_return.args:
+ action_return.args = inputs
+ if not action_return.type:
+ action_return.type = self.name
+ else:
+ result = self._parser.parse_outputs(outputs)
+ action_return = ActionReturn(inputs, type=self.name, result=result)
+ return action_return
diff --git a/lagent/actions/bing_map.py b/lagent/actions/bing_map.py
new file mode 100644
index 0000000000000000000000000000000000000000..75949be819a746f967cc43720e046e54b09581fa
--- /dev/null
+++ b/lagent/actions/bing_map.py
@@ -0,0 +1,268 @@
+# flake8: noqa: E501
+import json
+import os
+from typing import Optional, Type
+
+import aiohttp
+import requests
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.actions.parser import BaseParser, JsonParser
+
+
+class BINGMap(BaseAction):
+ """BING Map plugin for looking up map information."""
+
+ def __init__(
+ self,
+ key: Optional[str] = None,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ) -> None:
+ super().__init__(description, parser)
+ key = os.environ.get('BING_MAP_KEY', key)
+ if key is None:
+ raise ValueError(
+ 'Please set BING Map API key either in the environment '
+ 'as BING_MAP_KEY or pass it as `key` parameter.')
+ self.key = key
+ self.base_url = 'http://dev.virtualearth.net/REST/V1/'
+
+ @tool_api(explode_return=True)
+ def get_distance(self, start: str, end: str) -> dict:
+ """Get the distance between two locations in km.
+
+ Args:
+ start (:class:`str`): The start location
+ end (:class:`str`): The end location
+
+ Returns:
+ :class:`dict`: distance information
+ * distance (str): the distance in km.
+ """
+ # Request URL
+ url = self.base_url + 'Routes/Driving?o=json&wp.0=' + start + '&wp.1=' + end + '&key=' + self.key
+ # GET request
+ r = requests.get(url)
+ # TODO check request status?
+ data = json.loads(r.text)
+ # Extract route information
+ route = data['resourceSets'][0]['resources'][0]
+ # Extract distance in miles
+ distance = route['travelDistance']
+ return dict(distance=distance)
+
+ @tool_api(explode_return=True)
+ def get_route(self, start: str, end: str) -> dict:
+ """Get the route between two locations in km.
+
+ Args:
+ start (:class:`str`): The start location
+ end (:class:`str`): The end location
+
+ Returns:
+ :class:`dict`: route information
+ * route (list): the route, a list of actions.
+ """
+ # Request URL
+ url = self.base_url + 'Routes/Driving?o=json&wp.0=' + start + '&wp.1=' + end + '&key=' + self.key
+ # GET request
+ r = requests.get(url)
+ data = json.loads(r.text)
+ # Extract route information
+ route = data['resourceSets'][0]['resources'][0]
+ itinerary = route['routeLegs'][0]['itineraryItems']
+ # Extract route text information
+ route_text = []
+ for item in itinerary:
+ if 'instruction' in item:
+ route_text.append(item['instruction']['text'])
+ return dict(route=route_text)
+
+ @tool_api(explode_return=True)
+ def get_coordinates(self, location: str) -> dict:
+ """Get the coordinates of a location.
+
+ Args:
+ location (:class:`str`): the location need to get coordinates.
+
+ Returns:
+ :class:`dict`: coordinates information
+ * latitude (float): the latitude of the location.
+ * longitude (float): the longitude of the location.
+ """
+ url = self.base_url + 'Locations'
+ params = {'query': location, 'key': self.key}
+ response = requests.get(url, params=params)
+ json_data = response.json()
+ coordinates = json_data['resourceSets'][0]['resources'][0]['point'][
+ 'coordinates']
+ return dict(latitude=coordinates[0], longitude=coordinates[1])
+
+ @tool_api(explode_return=True)
+ def search_nearby(self,
+ search_term: str,
+ places: str = 'unknown',
+ latitude: float = 0.0,
+ longitude: float = 0.0,
+ radius: int = 5000) -> dict:
+ """Search for places nearby a location, within a given radius, and return the results into a list. You can use either the places name or the latitude and longitude.
+
+ Args:
+ search_term (:class:`str`): the place name.
+ places (:class:`str`): the name of the location. Defaults to ``'unknown'``.
+ latitude (:class:`float`): the latitude of the location. Defaults to ``0.0``.
+ longitude (:class:`float`): the longitude of the location. Defaults to ``0.0``.
+ radius (:class:`int`): radius in meters. Defaults to ``5000``.
+
+ Returns:
+ :class:`dict`: places information
+ * places (list): the list of places, each place is a dict with name and address, at most 5 places.
+ """
+ url = self.base_url + 'LocalSearch'
+ if places != 'unknown':
+ pos = self.get_coordinates(**{'location': places})
+ latitude, longitude = pos[1]['latitude'], pos[1]['longitude']
+ # Build the request query string
+ params = {
+ 'query': search_term,
+ 'userLocation': f'{latitude},{longitude}',
+ 'radius': radius,
+ 'key': self.key
+ }
+ # Make the request
+ response = requests.get(url, params=params)
+ # Parse the response
+ response_data = json.loads(response.content)
+ # Get the results
+ results = response_data['resourceSets'][0]['resources']
+ addresses = []
+ for result in results:
+ name = result['name']
+ address = result['Address']['formattedAddress']
+ addresses.append(dict(name=name, address=address))
+ if len(addresses) == 5:
+ break
+ return dict(place=addresses)
+
+
+class AsyncBINGMap(AsyncActionMixin, BINGMap):
+ """BING Map plugin for looking up map information."""
+
+ @tool_api(explode_return=True)
+ async def get_distance(self, start: str, end: str) -> dict:
+ """Get the distance between two locations in km.
+
+ Args:
+ start (:class:`str`): The start location
+ end (:class:`str`): The end location
+
+ Returns:
+ :class:`dict`: distance information
+ * distance (str): the distance in km.
+ """
+ # Request URL
+ url = self.base_url + 'Routes/Driving?o=json&wp.0=' + start + '&wp.1=' + end + '&key=' + self.key
+ # GET request
+ async with aiohttp.ClientSession() as session:
+ async with session.get(url) as resp:
+ # TODO check request status?
+ data = await resp.json()
+ # Extract route information
+ route = data['resourceSets'][0]['resources'][0]
+ # Extract distance in miles
+ distance = route['travelDistance']
+ return dict(distance=distance)
+
+ @tool_api(explode_return=True)
+ async def get_route(self, start: str, end: str) -> dict:
+ """Get the route between two locations in km.
+
+ Args:
+ start (:class:`str`): The start location
+ end (:class:`str`): The end location
+
+ Returns:
+ :class:`dict`: route information
+ * route (list): the route, a list of actions.
+ """
+ # Request URL
+ url = self.base_url + 'Routes/Driving?o=json&wp.0=' + start + '&wp.1=' + end + '&key=' + self.key
+ # GET request
+ async with aiohttp.ClientSession() as session:
+ async with session.get(url) as resp:
+ data = await resp.json()
+ # Extract route information
+ route = data['resourceSets'][0]['resources'][0]
+ itinerary = route['routeLegs'][0]['itineraryItems']
+ # Extract route text information
+ route_text = []
+ for item in itinerary:
+ if 'instruction' in item:
+ route_text.append(item['instruction']['text'])
+ return dict(route=route_text)
+
+ @tool_api(explode_return=True)
+ async def get_coordinates(self, location: str) -> dict:
+ """Get the coordinates of a location.
+
+ Args:
+ location (:class:`str`): the location need to get coordinates.
+
+ Returns:
+ :class:`dict`: coordinates information
+ * latitude (float): the latitude of the location.
+ * longitude (float): the longitude of the location.
+ """
+ url = self.base_url + 'Locations'
+ params = {'query': location, 'key': self.key}
+ async with aiohttp.ClientSession() as session:
+ async with session.get(url, params=params) as resp:
+ data = await resp.json()
+ coordinates = data['resourceSets'][0]['resources'][0]['point'][
+ 'coordinates']
+ return dict(latitude=coordinates[0], longitude=coordinates[1])
+
+ @tool_api(explode_return=True)
+ async def search_nearby(self,
+ search_term: str,
+ places: str = 'unknown',
+ latitude: float = 0.0,
+ longitude: float = 0.0,
+ radius: int = 5000) -> dict:
+ """Search for places nearby a location, within a given radius, and return the results into a list. You can use either the places name or the latitude and longitude.
+
+ Args:
+ search_term (:class:`str`): the place name.
+ places (:class:`str`): the name of the location. Defaults to ``'unknown'``.
+ latitude (:class:`float`): the latitude of the location. Defaults to ``0.0``.
+ longitude (:class:`float`): the longitude of the location. Defaults to ``0.0``.
+ radius (:class:`int`): radius in meters. Defaults to ``5000``.
+
+ Returns:
+ :class:`dict`: places information
+ * places (list): the list of places, each place is a dict with name and address, at most 5 places.
+ """
+ url = self.base_url + 'LocalSearch'
+ if places != 'unknown':
+ pos = self.get_coordinates(**{'location': places})
+ latitude, longitude = pos[1]['latitude'], pos[1]['longitude']
+ # Build the request query string
+ params = {
+ 'query': search_term,
+ 'userLocation': f'{latitude},{longitude}',
+ 'radius': radius,
+ 'key': self.key
+ }
+ async with aiohttp.ClientSession() as session:
+ async with session.get(url, params=params) as resp:
+ data = await resp.json()
+ results = data['resourceSets'][0]['resources']
+ addresses = []
+ for result in results:
+ name = result['name']
+ address = result['Address']['formattedAddress']
+ addresses.append(dict(name=name, address=address))
+ if len(addresses) == 5:
+ break
+ return dict(place=addresses)
diff --git a/lagent/actions/builtin_actions.py b/lagent/actions/builtin_actions.py
new file mode 100644
index 0000000000000000000000000000000000000000..6bc4a49525f1aae5cf84e55c0dd5c88930fd3ecc
--- /dev/null
+++ b/lagent/actions/builtin_actions.py
@@ -0,0 +1,109 @@
+from typing import Optional
+
+from lagent.actions.base_action import BaseAction, tool_api
+from lagent.actions.parser import BaseParser
+from lagent.schema import ActionReturn, ActionStatusCode, ActionValidCode
+
+
+class InvalidAction(BaseAction):
+ """This is a invalid action class, which is used to return error message
+ when the action is invalid.
+
+ Args:
+ err_msg (str): The error message. Defaults to 'The action is invalid,
+ please check the action name'.
+
+ Returns:
+ ActionReturn: The action return.
+ """
+
+ def __init__(self,
+ err_msg:
+ str = 'The action is invalid, please check the action name.',
+ description: Optional[dict] = None,
+ parser=BaseParser) -> None:
+ super().__init__(description, parser)
+ self._err_msg = err_msg
+
+ @tool_api
+ def run(self, err_msg: Optional[str] = None) -> ActionReturn:
+ """Return the error message.
+
+ Args:
+ err_msg (str, optional): The error message. If err_msg is not None,
+ it will be returned, otherwise the default error message will
+ be returned. Defaults to None.
+ """
+ action_return = ActionReturn(
+ url=None,
+ args=dict(text=err_msg),
+ errmsg=err_msg or self._err_msg,
+ type=self.name,
+ valid=ActionValidCode.INVALID,
+ state=ActionStatusCode.API_ERROR)
+ return action_return
+
+
+class NoAction(BaseAction):
+ """This is a no action class, which is used to return error message when
+ the response does not follow the format.
+
+ Args:
+ err_msg (str): The error message. Defaults to
+ 'Please follow the format'.
+ """
+
+ def __init__(self,
+ err_msg: str = 'Please follow the format',
+ description: Optional[dict] = None,
+ parser=BaseParser):
+ super().__init__(description, parser)
+ self._err_msg = err_msg
+
+ @tool_api
+ def run(self, err_msg: Optional[str] = None) -> ActionReturn:
+ """Return the error message.
+
+ Args:
+ err_msg (str, optional): The error message. If err_msg is not None,
+ it will be returned, otherwise the default error message will
+ be returned. Defaults to None.
+
+ Returns:
+ ActionReturn: The action return.
+ """
+ action_return = ActionReturn(
+ url=None,
+ args=dict(text=err_msg),
+ type=self.name,
+ errmsg=err_msg or self._err_msg,
+ valid=ActionValidCode.INVALID,
+ state=ActionStatusCode.API_ERROR)
+ return action_return
+
+
+class FinishAction(BaseAction):
+ """This is a finish action class, which is used to return the final
+ result."""
+
+ def __init__(self, description: Optional[dict] = None, parser=BaseParser):
+ super().__init__(description, parser)
+
+ @tool_api
+ def run(self, response: str) -> ActionReturn:
+ """Return the final result.
+
+ Args:
+ response (str): The final result.
+
+ Returns:
+ ActionReturn: The action return.
+ """
+ action_return = ActionReturn(
+ url=None,
+ args=dict(text=response),
+ result=[dict(type='text', content=response)],
+ type=self.name,
+ valid=ActionValidCode.FINISH,
+ state=ActionStatusCode.SUCCESS)
+ return action_return
diff --git a/lagent/actions/google_scholar_search.py b/lagent/actions/google_scholar_search.py
new file mode 100644
index 0000000000000000000000000000000000000000..6247f14777bb1e8c13bfb0f4eefee77df8ca47e6
--- /dev/null
+++ b/lagent/actions/google_scholar_search.py
@@ -0,0 +1,438 @@
+# flake8: noqa: E501
+import os
+from typing import Optional, Type
+
+from asyncer import asyncify
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.schema import ActionReturn, ActionStatusCode
+from .parser import BaseParser, JsonParser
+
+
+class GoogleScholar(BaseAction):
+ """Plugin for google scholar search.
+
+ Args:
+ api_key (str): API KEY to use serper google search API,
+ You can create a free API key at https://serper.dev.
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ def __init__(
+ self,
+ api_key: Optional[str] = None,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+ api_key = os.environ.get('SERPER_API_KEY', api_key)
+ if api_key is None:
+ raise ValueError(
+ 'Please set Serper API key either in the environment '
+ 'as SERPER_API_KEY or pass it as `api_key` parameter.'
+ )
+ self.api_key = api_key
+
+ @tool_api(explode_return=True)
+ def search_google_scholar(
+ self,
+ query: str,
+ cites: Optional[str] = None,
+ as_ylo: Optional[int] = None,
+ as_yhi: Optional[int] = None,
+ scisbd: Optional[int] = None,
+ cluster: Optional[str] = None,
+ hl: Optional[str] = None,
+ lr: Optional[str] = None,
+ start: Optional[int] = None,
+ num: Optional[int] = None,
+ as_sdt: Optional[str] = None,
+ safe: Optional[str] = None,
+ filter: Optional[str] = None,
+ as_vis: Optional[str] = None,
+ ) -> dict:
+ """Search for scholarly articles based on a query according to the google scholar.
+
+ Args:
+ query (str): The query to search for.
+ cites (Optional[str]): The unique ID of an article for triggering "Cited By" searches.
+ as_ylo (Optional[int]): The starting year for results (e.g., if as_ylo=2018, results before this year will be omitted).
+ as_yhi (Optional[int]): The ending year for results (e.g., if as_yhi=2018, results after this year will be omitted).
+ scisbd (Optional[int]): Defines articles added in the last year, sorted by date. It can be set to 1 to include only abstracts, or 2 to include everything.
+ cluster (Optional[str]): The unique ID of an article for triggering "All Versions" searches.
+ hl (Optional[str]): The language to use for the Google Scholar search.
+ lr (Optional[str]): One or multiple languages to limit the search to.
+ start (Optional[int]): The result offset for pagination (0 is the first page of results, 10 is the 2nd page, etc.)
+ num (Optional[int]): The maximum number of results to return, limited to 20.
+ as_sdt (Optional[str]): Can be used either as a search type or a filter.
+ safe (Optional[str]): The level of filtering for adult content.
+ filter (Optional[str]): Defines if the filters for 'Similar Results' and 'Omitted Results' are on or off.
+ as_vis (Optional[str]): Defines whether to include citations or not.
+
+ Returns:
+ :class:`dict`: article information
+ - title: a list of the titles of the three selected papers
+ - cited_by: a list of the citation numbers of the three selected papers
+ - organic_id: a list of the organic results' ids of the three selected papers
+ - pub_info: publication information of selected papers
+ """
+ from serpapi import GoogleSearch
+
+ params = {
+ 'q': query,
+ 'engine': 'google_scholar',
+ 'api_key': self.api_key,
+ 'cites': cites,
+ 'as_ylo': as_ylo,
+ 'as_yhi': as_yhi,
+ 'scisbd': scisbd,
+ 'cluster': cluster,
+ 'hl': hl,
+ 'lr': lr,
+ 'start': start,
+ 'num': num,
+ 'as_sdt': as_sdt,
+ 'safe': safe,
+ 'filter': filter,
+ 'as_vis': as_vis,
+ }
+ search = GoogleSearch(params)
+ try:
+ r = search.get_dict()
+ results = r['organic_results']
+ title = []
+ snippets = []
+ cited_by = []
+ organic_id = []
+ pub_info = []
+ for item in results[:3]:
+ title.append(item['title'])
+ pub_info.append(item['publication_info']['summary'])
+ citation = item['inline_links'].get('cited_by', {'total': ''})
+ cited_by.append(citation['total'])
+ snippets.append(item['snippet'])
+ organic_id.append(item['result_id'])
+ return dict(title=title, cited_by=cited_by, organic_id=organic_id, snippets=snippets)
+ except Exception as e:
+ return ActionReturn(errmsg=str(e), state=ActionStatusCode.HTTP_ERROR)
+
+ @tool_api(explode_return=True)
+ def get_author_information(
+ self,
+ author_id: str,
+ hl: Optional[str] = None,
+ view_op: Optional[str] = None,
+ sort: Optional[str] = None,
+ citation_id: Optional[str] = None,
+ start: Optional[int] = None,
+ num: Optional[int] = None,
+ no_cache: Optional[bool] = None,
+ async_req: Optional[bool] = None,
+ output: Optional[str] = None,
+ ) -> dict:
+ """Search for an author's information by author's id provided by get_author_id.
+
+ Args:
+ author_id (str): Required. The ID of an author.
+ hl (Optional[str]): The language to use for the Google Scholar Author search. Default is 'en'.
+ view_op (Optional[str]): Used for viewing specific parts of a page.
+ sort (Optional[str]): Used for sorting and refining articles.
+ citation_id (Optional[str]): Used for retrieving individual article citation.
+ start (Optional[int]): Defines the result offset. Default is 0.
+ num (Optional[int]): Defines the number of results to return. Default is 20.
+ no_cache (Optional[bool]): Forces SerpApi to fetch the results even if a cached version is already present. Default is False.
+ async_req (Optional[bool]): Defines the way you want to submit your search to SerpApi. Default is False.
+ output (Optional[str]): Defines the final output you want. Default is 'json'.
+
+ Returns:
+ :class:`dict`: author information
+ * name: author's name
+ * affliation: the affliation of the author
+ * articles: at most 3 articles by the author
+ * website: the author's homepage url
+ """
+ from serpapi import GoogleSearch
+
+ params = {
+ 'engine': 'google_scholar_author',
+ 'author_id': author_id,
+ 'api_key': self.api_key,
+ 'hl': hl,
+ 'view_op': view_op,
+ 'sort': sort,
+ 'citation_id': citation_id,
+ 'start': start,
+ 'num': num,
+ 'no_cache': no_cache,
+ 'async': async_req,
+ 'output': output,
+ }
+ try:
+ search = GoogleSearch(params)
+ results = search.get_dict()
+ author = results['author']
+ articles = results.get('articles', [])
+ return dict(
+ name=author['name'],
+ affiliations=author.get('affiliations', ''),
+ website=author.get('website', ''),
+ articles=[dict(title=article['title'], authors=article['authors']) for article in articles[:3]],
+ )
+ except Exception as e:
+ return ActionReturn(errmsg=str(e), state=ActionStatusCode.HTTP_ERROR)
+
+ @tool_api(explode_return=True)
+ def get_citation_format(
+ self,
+ q: str,
+ no_cache: Optional[bool] = None,
+ async_: Optional[bool] = None,
+ output: Optional[str] = 'json',
+ ) -> dict:
+ """Function to get MLA citation format by an identification of organic_result's id provided by search_google_scholar.
+
+ Args:
+ q (str): ID of an individual Google Scholar organic search result.
+ no_cache (Optional[bool]): If set to True, will force SerpApi to fetch the Google Scholar Cite results even if a cached version is already present. Defaults to None.
+ async_ (Optional[bool]): If set to True, will submit search to SerpApi and retrieve results later. Defaults to None.
+ output (Optional[str]): Final output format. Set to 'json' to get a structured JSON of the results, or 'html' to get the raw html retrieved. Defaults to 'json'.
+
+ Returns:
+ :class:`dict`: citation format
+ * authors: the authors of the article
+ * citation: the citation format of the article
+ """
+ from serpapi import GoogleSearch
+
+ params = {
+ 'q': q,
+ 'engine': 'google_scholar_cite',
+ 'api_key': self.api_key,
+ 'no_cache': no_cache,
+ 'async': async_,
+ 'output': output,
+ }
+ try:
+ search = GoogleSearch(params)
+ results = search.get_dict()
+ citation = results['citations']
+ citation_info = citation[0]['snippet']
+ return citation_info
+ except Exception as e:
+ return ActionReturn(errmsg=str(e), state=ActionStatusCode.HTTP_ERROR)
+
+ @tool_api(explode_return=True)
+ def get_author_id(
+ self,
+ mauthors: str,
+ hl: Optional[str] = 'en',
+ after_author: Optional[str] = None,
+ before_author: Optional[str] = None,
+ no_cache: Optional[bool] = False,
+ _async: Optional[bool] = False,
+ output: Optional[str] = 'json',
+ ) -> dict:
+ """The getAuthorId function is used to get the author's id by his or her name.
+
+ Args:
+ mauthors (str): Defines the author you want to search for.
+ hl (Optional[str]): Defines the language to use for the Google Scholar Profiles search. It's a two-letter language code. (e.g., 'en' for English, 'es' for Spanish, or 'fr' for French). Defaults to 'en'.
+ after_author (Optional[str]): Defines the next page token. It is used for retrieving the next page results. The parameter has the precedence over before_author parameter. Defaults to None.
+ before_author (Optional[str]): Defines the previous page token. It is used for retrieving the previous page results. Defaults to None.
+ no_cache (Optional[bool]): Will force SerpApi to fetch the Google Scholar Profiles results even if a cached version is already present. Defaults to False.
+ _async (Optional[bool]): Defines the way you want to submit your search to SerpApi. Defaults to False.
+ output (Optional[str]): Defines the final output you want. It can be set to 'json' (default) to get a structured JSON of the results, or 'html' to get the raw html retrieved. Defaults to 'json'.
+
+ Returns:
+ :class:`dict`: author id
+ * author_id: the author_id of the author
+ """
+ from serpapi import GoogleSearch
+
+ params = {
+ 'mauthors': mauthors,
+ 'engine': 'google_scholar_profiles',
+ 'api_key': self.api_key,
+ 'hl': hl,
+ 'after_author': after_author,
+ 'before_author': before_author,
+ 'no_cache': no_cache,
+ 'async': _async,
+ 'output': output,
+ }
+ try:
+ search = GoogleSearch(params)
+ results = search.get_dict()
+ profile = results['profiles']
+ author_info = dict(author_id=profile[0]['author_id'])
+ return author_info
+ except Exception as e:
+ return ActionReturn(errmsg=str(e), state=ActionStatusCode.HTTP_ERROR)
+
+
+class AsyncGoogleScholar(AsyncActionMixin, GoogleScholar):
+ """Plugin for google scholar search.
+
+ Args:
+ api_key (str): API KEY to use serper google search API,
+ You can create a free API key at https://serper.dev.
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def search_google_scholar(
+ self,
+ query: str,
+ cites: Optional[str] = None,
+ as_ylo: Optional[int] = None,
+ as_yhi: Optional[int] = None,
+ scisbd: Optional[int] = None,
+ cluster: Optional[str] = None,
+ hl: Optional[str] = None,
+ lr: Optional[str] = None,
+ start: Optional[int] = None,
+ num: Optional[int] = None,
+ as_sdt: Optional[str] = None,
+ safe: Optional[str] = None,
+ filter: Optional[str] = None,
+ as_vis: Optional[str] = None,
+ ) -> dict:
+ """Search for scholarly articles based on a query according to the google scholar.
+
+ Args:
+ query (str): The query to search for.
+ cites (Optional[str]): The unique ID of an article for triggering "Cited By" searches.
+ as_ylo (Optional[int]): The starting year for results (e.g., if as_ylo=2018, results before this year will be omitted).
+ as_yhi (Optional[int]): The ending year for results (e.g., if as_yhi=2018, results after this year will be omitted).
+ scisbd (Optional[int]): Defines articles added in the last year, sorted by date. It can be set to 1 to include only abstracts, or 2 to include everything.
+ cluster (Optional[str]): The unique ID of an article for triggering "All Versions" searches.
+ hl (Optional[str]): The language to use for the Google Scholar search.
+ lr (Optional[str]): One or multiple languages to limit the search to.
+ start (Optional[int]): The result offset for pagination (0 is the first page of results, 10 is the 2nd page, etc.)
+ num (Optional[int]): The maximum number of results to return, limited to 20.
+ as_sdt (Optional[str]): Can be used either as a search type or a filter.
+ safe (Optional[str]): The level of filtering for adult content.
+ filter (Optional[str]): Defines if the filters for 'Similar Results' and 'Omitted Results' are on or off.
+ as_vis (Optional[str]): Defines whether to include citations or not.
+
+ Returns:
+ :class:`dict`: article information
+ - title: a list of the titles of the three selected papers
+ - cited_by: a list of the citation numbers of the three selected papers
+ - organic_id: a list of the organic results' ids of the three selected papers
+ - pub_info: publication information of selected papers
+ """
+ return super().search_google_scholar(
+ query,
+ cites,
+ as_ylo,
+ as_yhi,
+ scisbd,
+ cluster,
+ hl,
+ lr,
+ start,
+ num,
+ as_sdt,
+ safe,
+ filter,
+ as_vis,
+ )
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def get_author_information(
+ self,
+ author_id: str,
+ hl: Optional[str] = None,
+ view_op: Optional[str] = None,
+ sort: Optional[str] = None,
+ citation_id: Optional[str] = None,
+ start: Optional[int] = None,
+ num: Optional[int] = None,
+ no_cache: Optional[bool] = None,
+ async_req: Optional[bool] = None,
+ output: Optional[str] = None,
+ ) -> dict:
+ """Search for an author's information by author's id provided by get_author_id.
+
+ Args:
+ author_id (str): Required. The ID of an author.
+ hl (Optional[str]): The language to use for the Google Scholar Author search. Default is 'en'.
+ view_op (Optional[str]): Used for viewing specific parts of a page.
+ sort (Optional[str]): Used for sorting and refining articles.
+ citation_id (Optional[str]): Used for retrieving individual article citation.
+ start (Optional[int]): Defines the result offset. Default is 0.
+ num (Optional[int]): Defines the number of results to return. Default is 20.
+ no_cache (Optional[bool]): Forces SerpApi to fetch the results even if a cached version is already present. Default is False.
+ async_req (Optional[bool]): Defines the way you want to submit your search to SerpApi. Default is False.
+ output (Optional[str]): Defines the final output you want. Default is 'json'.
+
+ Returns:
+ :class:`dict`: author information
+ * name: author's name
+ * affliation: the affliation of the author
+ * articles: at most 3 articles by the author
+ * website: the author's homepage url
+ """
+ return super().get_author_information(
+ author_id, hl, view_op, sort, citation_id, start, num, no_cache, async_req, output
+ )
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def get_citation_format(
+ self,
+ q: str,
+ no_cache: Optional[bool] = None,
+ async_: Optional[bool] = None,
+ output: Optional[str] = 'json',
+ ) -> dict:
+ """Function to get MLA citation format by an identification of organic_result's id provided by search_google_scholar.
+
+ Args:
+ q (str): ID of an individual Google Scholar organic search result.
+ no_cache (Optional[bool]): If set to True, will force SerpApi to fetch the Google Scholar Cite results even if a cached version is already present. Defaults to None.
+ async_ (Optional[bool]): If set to True, will submit search to SerpApi and retrieve results later. Defaults to None.
+ output (Optional[str]): Final output format. Set to 'json' to get a structured JSON of the results, or 'html' to get the raw html retrieved. Defaults to 'json'.
+
+ Returns:
+ :class:`dict`: citation format
+ * authors: the authors of the article
+ * citation: the citation format of the article
+ """
+ return super().get_citation_format(q, no_cache, async_, output)
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def get_author_id(
+ self,
+ mauthors: str,
+ hl: Optional[str] = 'en',
+ after_author: Optional[str] = None,
+ before_author: Optional[str] = None,
+ no_cache: Optional[bool] = False,
+ _async: Optional[bool] = False,
+ output: Optional[str] = 'json',
+ ) -> dict:
+ """The getAuthorId function is used to get the author's id by his or her name.
+
+ Args:
+ mauthors (str): Defines the author you want to search for.
+ hl (Optional[str]): Defines the language to use for the Google Scholar Profiles search. It's a two-letter language code. (e.g., 'en' for English, 'es' for Spanish, or 'fr' for French). Defaults to 'en'.
+ after_author (Optional[str]): Defines the next page token. It is used for retrieving the next page results. The parameter has the precedence over before_author parameter. Defaults to None.
+ before_author (Optional[str]): Defines the previous page token. It is used for retrieving the previous page results. Defaults to None.
+ no_cache (Optional[bool]): Will force SerpApi to fetch the Google Scholar Profiles results even if a cached version is already present. Defaults to False.
+ _async (Optional[bool]): Defines the way you want to submit your search to SerpApi. Defaults to False.
+ output (Optional[str]): Defines the final output you want. It can be set to 'json' (default) to get a structured JSON of the results, or 'html' to get the raw html retrieved. Defaults to 'json'.
+
+ Returns:
+ :class:`dict`: author id
+ * author_id: the author_id of the author
+ """
+ return super().get_author_id(mauthors, hl, after_author, before_author, no_cache, _async, output)
diff --git a/lagent/actions/google_search.py b/lagent/actions/google_search.py
new file mode 100644
index 0000000000000000000000000000000000000000..27b314565cdb62ba330e785a6bde313c781c33f7
--- /dev/null
+++ b/lagent/actions/google_search.py
@@ -0,0 +1,244 @@
+import os
+from typing import List, Optional, Tuple, Type, Union
+
+import aiohttp
+import requests
+
+from lagent.schema import ActionReturn, ActionStatusCode
+from .base_action import AsyncActionMixin, BaseAction, tool_api
+from .parser import BaseParser, JsonParser
+
+
+class GoogleSearch(BaseAction):
+ """Wrapper around the Serper.dev Google Search API.
+
+ To use, you should pass your serper API key to the constructor.
+
+ Code is modified from lang-chain GoogleSerperAPIWrapper
+ (https://github.com/langchain-ai/langchain/blob/ba5f
+ baba704a2d729a4b8f568ed70d7c53e799bb/libs/langchain/
+ langchain/utilities/google_serper.py)
+
+ Args:
+ api_key (str): API KEY to use serper google search API,
+ You can create a free API key at https://serper.dev.
+ timeout (int): Upper bound of waiting time for a serper request.
+ search_type (str): Serper API support ['search', 'images', 'news',
+ 'places'] types of search, currently we only support 'search'.
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+ result_key_for_type = {
+ 'news': 'news',
+ 'places': 'places',
+ 'images': 'images',
+ 'search': 'organic',
+ }
+
+ def __init__(
+ self,
+ api_key: Optional[str] = None,
+ timeout: int = 5,
+ search_type: str = 'search',
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+ api_key = os.environ.get('SERPER_API_KEY', api_key)
+ if api_key is None:
+ raise ValueError(
+ 'Please set Serper API key either in the environment '
+ 'as SERPER_API_KEY or pass it as `api_key` parameter.')
+ self.api_key = api_key
+ self.timeout = timeout
+ self.search_type = search_type
+
+ @tool_api
+ def run(self, query: str, k: int = 10) -> ActionReturn:
+ """一个可以从谷歌搜索结果的API。当你需要对于一个特定问题找到简短明了的回答时,可以使用它。输入应该是一个搜索查询。
+
+ Args:
+ query (str): the search content
+ k (int): select first k results in the search results as response
+ """
+ tool_return = ActionReturn(type=self.name)
+ status_code, response = self._search(query, k=k)
+ # convert search results to ToolReturn format
+ if status_code == -1:
+ tool_return.errmsg = response
+ tool_return.state = ActionStatusCode.HTTP_ERROR
+ elif status_code == 200:
+ parsed_res = self._parse_results(response, k)
+ tool_return.result = [dict(type='text', content=str(parsed_res))]
+ tool_return.state = ActionStatusCode.SUCCESS
+ else:
+ tool_return.errmsg = str(status_code)
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+ def _parse_results(self, results: dict, k: int) -> Union[str, List[str]]:
+ """Parse the search results from Serper API.
+
+ Args:
+ results (dict): The search content from Serper API
+ in json format.
+
+ Returns:
+ List[str]: The parsed search results.
+ """
+
+ snippets = []
+
+ if results.get('answerBox'):
+ answer_box = results.get('answerBox', {})
+ if answer_box.get('answer'):
+ return [answer_box.get('answer')]
+ elif answer_box.get('snippet'):
+ return [answer_box.get('snippet').replace('\n', ' ')]
+ elif answer_box.get('snippetHighlighted'):
+ return answer_box.get('snippetHighlighted')
+
+ if results.get('knowledgeGraph'):
+ kg = results.get('knowledgeGraph', {})
+ title = kg.get('title')
+ entity_type = kg.get('type')
+ if entity_type:
+ snippets.append(f'{title}: {entity_type}.')
+ description = kg.get('description')
+ if description:
+ snippets.append(description)
+ for attribute, value in kg.get('attributes', {}).items():
+ snippets.append(f'{title} {attribute}: {value}.')
+
+ for result in results[self.result_key_for_type[
+ self.search_type]][:k]:
+ if 'snippet' in result:
+ snippets.append(result['snippet'])
+ for attribute, value in result.get('attributes', {}).items():
+ snippets.append(f'{attribute}: {value}.')
+
+ if len(snippets) == 0:
+ return ['No good Google Search Result was found']
+ return snippets
+
+ def _search(self,
+ search_term: str,
+ search_type: Optional[str] = None,
+ **kwargs) -> Tuple[int, Union[dict, str]]:
+ """HTTP requests to Serper API.
+
+ Args:
+ search_term (str): The search query.
+ search_type (str): search type supported by Serper API,
+ default to 'search'.
+
+ Returns:
+ tuple: the return value is a tuple contains:
+ - status_code (int): HTTP status code from Serper API.
+ - response (dict): response context with json format.
+ """
+ headers = {
+ 'X-API-KEY': self.api_key or '',
+ 'Content-Type': 'application/json',
+ }
+ params = {
+ 'q': search_term,
+ **{
+ key: value
+ for key, value in kwargs.items() if value is not None
+ },
+ }
+ try:
+ response = requests.post(
+ f'https://google.serper.dev/{search_type or self.search_type}',
+ headers=headers,
+ params=params,
+ timeout=self.timeout)
+ except Exception as e:
+ return -1, str(e)
+ return response.status_code, response.json()
+
+
+class AsyncGoogleSearch(AsyncActionMixin, GoogleSearch):
+ """Wrapper around the Serper.dev Google Search API.
+
+ To use, you should pass your serper API key to the constructor.
+
+ Code is modified from lang-chain GoogleSerperAPIWrapper
+ (https://github.com/langchain-ai/langchain/blob/ba5f
+ baba704a2d729a4b8f568ed70d7c53e799bb/libs/langchain/
+ langchain/utilities/google_serper.py)
+
+ Args:
+ api_key (str): API KEY to use serper google search API,
+ You can create a free API key at https://serper.dev.
+ timeout (int): Upper bound of waiting time for a serper request.
+ search_type (str): Serper API support ['search', 'images', 'news',
+ 'places'] types of search, currently we only support 'search'.
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ @tool_api
+ async def run(self, query: str, k: int = 10) -> ActionReturn:
+ """一个可以从谷歌搜索结果的API。当你需要对于一个特定问题找到简短明了的回答时,可以使用它。输入应该是一个搜索查询。
+
+ Args:
+ query (str): the search content
+ k (int): select first k results in the search results as response
+ """
+ tool_return = ActionReturn(type=self.name)
+ status_code, response = await self._search(query, k=k)
+ # convert search results to ToolReturn format
+ if status_code == -1:
+ tool_return.errmsg = response
+ tool_return.state = ActionStatusCode.HTTP_ERROR
+ elif status_code == 200:
+ parsed_res = self._parse_results(response)
+ tool_return.result = [dict(type='text', content=str(parsed_res))]
+ tool_return.state = ActionStatusCode.SUCCESS
+ else:
+ tool_return.errmsg = str(status_code)
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+ async def _search(self,
+ search_term: str,
+ search_type: Optional[str] = None,
+ **kwargs) -> Tuple[int, Union[dict, str]]:
+ """HTTP requests to Serper API.
+
+ Args:
+ search_term (str): The search query.
+ search_type (str): search type supported by Serper API,
+ default to 'search'.
+
+ Returns:
+ tuple: the return value is a tuple contains:
+ - status_code (int): HTTP status code from Serper API.
+ - response (dict): response context with json format.
+ """
+ headers = {
+ 'X-API-KEY': self.api_key or '',
+ 'Content-Type': 'application/json',
+ }
+ params = {
+ 'q': search_term,
+ **{
+ key: value
+ for key, value in kwargs.items() if value is not None
+ },
+ }
+ timeout = aiohttp.ClientTimeout(total=self.timeout)
+ async with aiohttp.ClientSession(timeout=timeout) as session:
+ try:
+ async with session.post(
+ f'https://google.serper.dev/{search_type or self.search_type}',
+ headers=headers,
+ params=params) as resp:
+ code, ret = resp.status, await resp.json()
+ except aiohttp.ClientError as e:
+ code, ret = -1, str(e)
+ return code, ret
diff --git a/lagent/actions/ipython_interactive.py b/lagent/actions/ipython_interactive.py
new file mode 100644
index 0000000000000000000000000000000000000000..e84df9c22e3e4feee89775e84f87e495500c19b8
--- /dev/null
+++ b/lagent/actions/ipython_interactive.py
@@ -0,0 +1,273 @@
+import re
+import signal
+from contextlib import contextmanager, redirect_stdout
+from dataclasses import dataclass
+from enum import Enum
+from io import StringIO
+from typing import Optional, Type
+
+from ..schema import ActionReturn, ActionStatusCode
+from .base_action import AsyncActionMixin, BaseAction, tool_api
+from .parser import BaseParser, JsonParser
+
+
+class Status(str, Enum):
+ """Execution status."""
+ SUCCESS = 'success'
+ FAILURE = 'failure'
+
+
+@dataclass
+class ExecutionResult:
+ """Execution result."""
+ status: Status
+ value: Optional[str] = None
+ msg: Optional[str] = None
+
+
+@contextmanager
+def _raise_timeout(timeout):
+
+ def _handler(signum, frame):
+ raise TimeoutError()
+
+ signal.signal(signal.SIGALRM, _handler)
+ signal.alarm(timeout)
+
+ try:
+ yield
+ finally:
+ signal.alarm(0)
+
+
+class IPythonInteractive(BaseAction):
+ """An interactive IPython shell for code execution.
+
+ Args:
+ timeout (int): Upper bound of waiting time for Python script execution.
+ Defaults to ``20``.
+ max_out_len (int): maximum output length. No truncation occurs if negative.
+ Defaults to ``2048``.
+ use_signals (bool): whether signals should be used for timing function out
+ or the multiprocessing. Set to ``False`` when not running in the main
+ thread, e.g. web applications. Defaults to ``True``
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ def __init__(
+ self,
+ timeout: int = 30,
+ max_out_len: int = 8192,
+ use_signals: bool = True,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+ self.timeout = timeout
+ self._executor = self.create_shell()
+ self._highlighting = re.compile(
+ r'(?:\x1B[@-_]|[\x80-\x9F])[0-?]*[ -/]*[@-~]')
+ self._max_out_len = max_out_len if max_out_len >= 0 else None
+ self._use_signals = use_signals
+
+ def reset(self):
+ """Clear the context."""
+ self._executor.reset()
+
+ @tool_api
+ def run(self, command: str, timeout: Optional[int] = None) -> ActionReturn:
+ """Launch an IPython Interactive Shell to execute code.
+
+ Args:
+ command (:class:`str`): Python code snippet
+ timeout (:class:`Optional[int]`): timeout for execution.
+ This argument only works in the main thread. Defaults to ``None``.
+ """
+ from timeout_decorator import timeout as timer
+ tool_return = ActionReturn(args={'text': command}, type=self.name)
+ ret = (
+ timer(timeout or self.timeout)(self.exec)(command)
+ if self._use_signals else self.exec(command))
+ if ret.status is Status.SUCCESS:
+ tool_return.result = [{'type': 'text', 'content': ret.value}]
+ tool_return.state = ActionStatusCode.SUCCESS
+ else:
+ tool_return.errmsg = ret.msg
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+ def exec(self, code: str) -> ExecutionResult:
+ """Run Python scripts in IPython shell.
+
+ Args:
+ code (:class:`str`): code block
+
+ Returns:
+ :py:class:`ExecutionResult`: execution result
+ """
+ with StringIO() as io:
+ with redirect_stdout(io):
+ ret = self._executor.run_cell(self.extract_code(code))
+ result = ret.result
+ if result is not None:
+ return ExecutionResult(Status.SUCCESS,
+ str(result)[:self._max_out_len])
+ outs = io.getvalue().strip().split('\n')
+ if not outs:
+ return ExecutionResult(Status.SUCCESS, '')
+ for i, out in enumerate(outs):
+ if re.search('Error|Traceback', out, re.S):
+ if 'TimeoutError' in out:
+ return ExecutionResult(
+ Status.FAILURE,
+ msg=('The code interpreter encountered '
+ 'a timeout error.'))
+ err_idx = i
+ break
+ else:
+ return ExecutionResult(Status.SUCCESS,
+ outs[-1].strip()[:self._max_out_len])
+ return ExecutionResult(
+ Status.FAILURE,
+ msg=self._highlighting.sub(
+ '', '\n'.join(outs[err_idx:])[:self._max_out_len]),
+ )
+
+ @staticmethod
+ def create_shell():
+ from IPython import InteractiveShell
+ from traitlets.config import Config
+
+ c = Config()
+ c.HistoryManager.enabled = False
+ c.HistoryManager.hist_file = ':memory:'
+ return InteractiveShell(
+ user_ns={'_raise_timeout': _raise_timeout}, config=c)
+
+ @staticmethod
+ def extract_code(text: str) -> str:
+ """Extract Python code from markup languages.
+
+ Args:
+ text (:class:`str`): Markdown-formatted text
+
+ Returns:
+ :class:`str`: Python code
+ """
+ import json5
+
+ # Match triple backtick blocks first
+ triple_match = re.search(r'```[^\n]*\n(.+?)```', text, re.DOTALL)
+ # Match single backtick blocks second
+ single_match = re.search(r'`([^`]*)`', text, re.DOTALL)
+ if triple_match:
+ text = triple_match.group(1)
+ elif single_match:
+ text = single_match.group(1)
+ else:
+ try:
+ text = json5.loads(text)['code']
+ except Exception:
+ pass
+ # If no code blocks found, return original text
+ return text
+
+ @staticmethod
+ def wrap_code_with_timeout(code: str, timeout: int) -> str:
+ if not code.strip():
+ return code
+ code = code.strip('\n').rstrip()
+ indent = len(code) - len(code.lstrip())
+ handle = ' ' * indent + f'with _raise_timeout({timeout}):\n'
+ block = '\n'.join([' ' + line for line in code.split('\n')])
+ wrapped_code = handle + block
+ last_line = code.split('\n')[-1]
+ is_expression = True
+ try:
+ compile(last_line.lstrip(), '', 'eval')
+ except SyntaxError:
+ is_expression = False
+ if is_expression:
+ wrapped_code += '\n' * 5 + last_line
+ return wrapped_code
+
+
+class AsyncIPythonInteractive(AsyncActionMixin, IPythonInteractive):
+ """An interactive IPython shell for code execution.
+
+ Args:
+ timeout (int): Upper bound of waiting time for Python script execution.
+ Defaults to ``20``.
+ max_out_len (int): maximum output length. No truncation occurs if negative.
+ Defaults to ``2048``.
+ use_signals (bool): whether signals should be used for timing function out
+ or the multiprocessing. Set to ``False`` when not running in the main
+ thread, e.g. web applications. Defaults to ``True``
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ @tool_api
+ async def run(self,
+ command: str,
+ timeout: Optional[int] = None) -> ActionReturn:
+ """Launch an IPython Interactive Shell to execute code.
+
+ Args:
+ command (:class:`str`): Python code snippet
+ timeout (:class:`Optional[int]`): timeout for execution.
+ This argument only works in the main thread. Defaults to ``None``.
+ """
+ tool_return = ActionReturn(args={'text': command}, type=self.name)
+ ret = await self.exec(command, timeout)
+ if ret.status is Status.SUCCESS:
+ tool_return.result = [{'type': 'text', 'content': ret.value}]
+ tool_return.state = ActionStatusCode.SUCCESS
+ else:
+ tool_return.errmsg = ret.msg
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+ async def exec(self, code: str, timeout: int = None) -> ExecutionResult:
+ """Asynchronously run Python scripts in IPython shell.
+
+ Args:
+ code (:class:`str`): code block
+ timeout (:class:`int`): max waiting time for code execution
+
+ Returns:
+ :py:class:`ExecutionResult`: execution result
+ """
+ with StringIO() as io:
+ with redirect_stdout(io):
+ ret = await self._executor.run_cell_async(
+ # ret = await self.create_shell().run_cell_async(
+ self.wrap_code_with_timeout(
+ self.extract_code(code), timeout or self.timeout))
+ result = ret.result
+ if result is not None:
+ return ExecutionResult(Status.SUCCESS,
+ str(result)[:self._max_out_len])
+ outs = io.getvalue().strip().split('\n')
+ if not outs:
+ return ExecutionResult(Status.SUCCESS, '')
+ for i, out in enumerate(outs):
+ if re.search('Error|Traceback', out, re.S):
+ if 'TimeoutError' in out:
+ return ExecutionResult(
+ Status.FAILURE,
+ msg=('The code interpreter encountered a '
+ 'timeout error.'))
+ err_idx = i
+ break
+ else:
+ return ExecutionResult(Status.SUCCESS,
+ outs[-1].strip()[:self._max_out_len])
+ return ExecutionResult(
+ Status.FAILURE,
+ msg=self._highlighting.sub(
+ '', '\n'.join(outs[err_idx:])[:self._max_out_len]),
+ )
diff --git a/lagent/actions/ipython_interpreter.py b/lagent/actions/ipython_interpreter.py
new file mode 100644
index 0000000000000000000000000000000000000000..68e9a0de94602845d191eb63d9e92dc7ae230ca3
--- /dev/null
+++ b/lagent/actions/ipython_interpreter.py
@@ -0,0 +1,584 @@
+# flake8: noqa: E501
+import asyncio
+import base64
+import io
+import json
+import logging
+import os
+import queue
+import re
+import signal
+import sys
+import tempfile
+import traceback
+import uuid
+from typing import Optional, Tuple, Type
+
+from jupyter_client import AsyncKernelClient, AsyncKernelManager, AsyncMultiKernelManager
+from tenacity import retry, retry_if_result, stop_after_attempt, wait_fixed
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.actions.parser import BaseParser, JsonParser
+from lagent.schema import ActionReturn, ActionStatusCode
+
+logger = logging.getLogger(__name__)
+
+START_CODE = """
+def input(*args, **kwargs):
+ raise NotImplementedError('Python input() function is disabled.')
+
+get_ipython().system = lambda *args: print('Assume we have this package, ! is disabled!')
+{}
+""" # noqa
+
+
+class TimeoutError(Exception):
+ pass
+
+
+class KernelDeath(Exception):
+ pass
+
+
+async def async_run_code(
+ km: AsyncKernelManager,
+ code,
+ *,
+ interrupt_after=30,
+ iopub_timeout=40,
+ wait_for_ready_timeout=60,
+ shutdown_kernel=True,
+):
+ assert iopub_timeout > interrupt_after
+ try:
+
+ async def get_iopub_msg_with_death_detection(kc: AsyncKernelClient,
+ *,
+ timeout=None):
+ loop = asyncio.get_running_loop()
+ dead_fut = loop.create_future()
+
+ def restarting():
+ assert (
+ False
+ ), "Restart shouldn't happen because config.KernelRestarter.restart_limit is expected to be set to 0"
+
+ def dead():
+ logger.info("Kernel has died, will NOT restart")
+ dead_fut.set_result(None)
+
+ msg_task = asyncio.create_task(kc.get_iopub_msg(timeout=timeout))
+ km.add_restart_callback(restarting, "restart")
+ km.add_restart_callback(dead, "dead")
+ try:
+ done, _ = await asyncio.wait(
+ [dead_fut, msg_task], return_when=asyncio.FIRST_COMPLETED)
+ if dead_fut in done:
+ raise KernelDeath()
+ assert msg_task in done
+ return await msg_task
+ finally:
+ msg_task.cancel()
+ km.remove_restart_callback(restarting, "restart")
+ km.remove_restart_callback(dead, "dead")
+
+ async def send_interrupt():
+ await asyncio.sleep(interrupt_after)
+ logger.info("Sending interrupt to kernel")
+ await km.interrupt_kernel()
+
+ @retry(
+ retry=retry_if_result(lambda ret: ret[-1].strip() in [
+ 'KeyboardInterrupt',
+ f"Kernel didn't respond in {wait_for_ready_timeout} seconds",
+ ] if isinstance(ret, tuple) else False),
+ stop=stop_after_attempt(3),
+ wait=wait_fixed(1),
+ retry_error_callback=lambda state: state.outcome.result())
+ async def run():
+ execute_result = None
+ error_traceback = None
+ stream_text_list = []
+ kc = km.client()
+ assert isinstance(kc, AsyncKernelClient)
+ kc.start_channels()
+ try:
+ await kc.wait_for_ready(timeout=wait_for_ready_timeout)
+ msg_id = kc.execute(code)
+ while True:
+ message = await get_iopub_msg_with_death_detection(
+ kc, timeout=iopub_timeout)
+ if logger.isEnabledFor(logging.DEBUG):
+ logger.debug(
+ json.dumps(message, indent=2, default=str))
+ assert message["parent_header"]["msg_id"] == msg_id
+ msg_type = message["msg_type"]
+ if msg_type == "status":
+ if message["content"]["execution_state"] == "idle":
+ break
+ elif msg_type == "stream":
+ stream_name = message["content"]["name"]
+ stream_text = message["content"]["text"]
+ stream_text_list.append(stream_text)
+ elif msg_type == "execute_result":
+ execute_result = message["content"]["data"]
+ elif msg_type == "error":
+ error_traceback_lines = message["content"]["traceback"]
+ error_traceback = "\n".join(error_traceback_lines)
+ elif msg_type == "execute_input":
+ pass
+ else:
+ assert False, f"Unknown message_type: {msg_type}"
+ finally:
+ kc.stop_channels()
+ return execute_result, error_traceback, "".join(stream_text_list)
+
+ if interrupt_after:
+ run_task = asyncio.create_task(run())
+ send_interrupt_task = asyncio.create_task(send_interrupt())
+ done, _ = await asyncio.wait([run_task, send_interrupt_task],
+ return_when=asyncio.FIRST_COMPLETED)
+ if run_task in done:
+ send_interrupt_task.cancel()
+ else:
+ assert send_interrupt_task in done
+ result = await run_task
+ else:
+ result = await run()
+ return result
+ finally:
+ if shutdown_kernel:
+ await km.shutdown_kernel()
+
+
+class IPythonInterpreter(BaseAction):
+ """A IPython executor that can execute Python scripts in a jupyter manner.
+
+ Args:
+ timeout (int): Upper bound of waiting time for Python script execution.
+ Defaults to 20.
+ user_data_dir (str, optional): Specified the user data directory for files
+ loading. If set to `ENV`, use `USER_DATA_DIR` environment variable.
+ Defaults to `ENV`.
+ work_dir (str, optional): Specify which directory to save output images to.
+ Defaults to ``'./work_dir/tmp_dir'``.
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ _KERNEL_CLIENTS = {}
+
+ def __init__(
+ self,
+ timeout: int = 20,
+ user_data_dir: str = 'ENV',
+ work_dir='./work_dir/tmp_dir',
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+
+ self.timeout = timeout
+ if user_data_dir == 'ENV':
+ user_data_dir = os.environ.get('USER_DATA_DIR', '')
+
+ if user_data_dir:
+ user_data_dir = os.path.dirname(user_data_dir)
+ user_data_dir = f"import os\nos.chdir('{user_data_dir}')"
+ self.user_data_dir = user_data_dir
+ self._initialized = False
+ self.work_dir = work_dir
+ if not os.path.exists(self.work_dir):
+ os.makedirs(self.work_dir, exist_ok=True)
+
+ @staticmethod
+ def start_kernel():
+ from jupyter_client import KernelManager
+
+ # start the kernel and manager
+ km = KernelManager()
+ km.start_kernel()
+ kc = km.client()
+ return km, kc
+
+ def initialize(self):
+ if self._initialized:
+ return
+ pid = os.getpid()
+ if pid not in self._KERNEL_CLIENTS:
+ self._KERNEL_CLIENTS[pid] = self.start_kernel()
+ self.kernel_manager, self.kernel_client = self._KERNEL_CLIENTS[pid]
+ self._initialized = True
+ self._call(START_CODE.format(self.user_data_dir), None)
+
+ def reset(self):
+ if not self._initialized:
+ self.initialize()
+ else:
+ code = "get_ipython().run_line_magic('reset', '-f')\n" + \
+ START_CODE.format(self.user_data_dir)
+ self._call(code, None)
+
+ def _call(self,
+ command: str,
+ timeout: Optional[int] = None) -> Tuple[str, bool]:
+ self.initialize()
+ command = extract_code(command)
+
+ # check previous remaining result
+ while True:
+ try:
+ msg = self.kernel_client.get_iopub_msg(timeout=5)
+ msg_type = msg['msg_type']
+ if msg_type == 'status':
+ if msg['content'].get('execution_state') == 'idle':
+ break
+ except queue.Empty:
+ # assume no result
+ break
+
+ self.kernel_client.execute(command)
+
+ def _inner_call():
+ result = ''
+ images = []
+ succeed = True
+ image_idx = 0
+
+ while True:
+ text = ''
+ image = ''
+ finished = False
+ msg_type = 'error'
+ try:
+ msg = self.kernel_client.get_iopub_msg(timeout=20)
+ msg_type = msg['msg_type']
+ if msg_type == 'status':
+ if msg['content'].get('execution_state') == 'idle':
+ finished = True
+ elif msg_type == 'execute_result':
+ text = msg['content']['data'].get('text/plain', '')
+ if 'image/png' in msg['content']['data']:
+ image_b64 = msg['content']['data']['image/png']
+ image_url = publish_image_to_local(
+ image_b64, self.work_dir)
+ image_idx += 1
+ image = '![fig-%03d](%s)' % (image_idx, image_url)
+
+ elif msg_type == 'display_data':
+ if 'image/png' in msg['content']['data']:
+ image_b64 = msg['content']['data']['image/png']
+ image_url = publish_image_to_local(
+ image_b64, self.work_dir)
+ image_idx += 1
+ image = '![fig-%03d](%s)' % (image_idx, image_url)
+
+ else:
+ text = msg['content']['data'].get('text/plain', '')
+ elif msg_type == 'stream':
+ msg_type = msg['content']['name'] # stdout, stderr
+ text = msg['content']['text']
+ elif msg_type == 'error':
+ succeed = False
+ text = escape_ansi('\n'.join(
+ msg['content']['traceback']))
+ if 'M6_CODE_INTERPRETER_TIMEOUT' in text:
+ text = f'Timeout. No response after {timeout} seconds.' # noqa
+ except queue.Empty:
+ # stop current task in case break next input.
+ self.kernel_manager.interrupt_kernel()
+ succeed = False
+ text = f'Timeout. No response after {timeout} seconds.'
+ finished = True
+ except Exception:
+ succeed = False
+ msg = ''.join(traceback.format_exception(*sys.exc_info()))
+ # text = 'The code interpreter encountered an unexpected error.' # noqa
+ text = msg
+ logging.warning(msg)
+ finished = True
+ if text:
+ # result += f'\n\n{msg_type}:\n\n```\n{text}\n```'
+ result += f'{text}'
+
+ if image:
+ images.append(image_url)
+ if finished:
+ return succeed, dict(text=result, image=images)
+
+ try:
+ if timeout:
+
+ def handler(signum, frame):
+ raise TimeoutError()
+
+ signal.signal(signal.SIGALRM, handler)
+ signal.alarm(timeout)
+ succeed, result = _inner_call()
+ except TimeoutError:
+ succeed = False
+ text = 'The code interpreter encountered an unexpected error.'
+ result = f'\n\nerror:\n\n```\n{text}\n```'
+ finally:
+ if timeout:
+ signal.alarm(0)
+
+ # result = result.strip('\n')
+ return succeed, result
+
+ @tool_api
+ def run(self, command: str, timeout: Optional[int] = None) -> ActionReturn:
+ r"""When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.
+
+ Args:
+ command (:class:`str`): Python code
+ timeout (:class:`Optional[int]`): Upper bound of waiting time for Python script execution.
+ """
+ tool_return = ActionReturn(url=None, args=None, type=self.name)
+ tool_return.args = dict(text=command)
+ succeed, result = self._call(command, timeout)
+ if succeed:
+ text = result['text']
+ image = result.get('image', [])
+ resp = [dict(type='text', content=text)]
+ if image:
+ resp.extend([dict(type='image', content=im) for im in image])
+ tool_return.result = resp
+ # tool_return.result = dict(
+ # text=result['text'], image=result.get('image', [])[0])
+ tool_return.state = ActionStatusCode.SUCCESS
+ else:
+ tool_return.errmsg = result.get('text', '') if isinstance(
+ result, dict) else result
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+
+class AsyncIPythonInterpreter(AsyncActionMixin, IPythonInterpreter):
+ """A IPython executor that can execute Python scripts in a jupyter manner.
+
+ Args:
+ timeout (int): Upper bound of waiting time for Python script execution.
+ Defaults to 20.
+ user_data_dir (str, optional): Specified the user data directory for files
+ loading. If set to `ENV`, use `USER_DATA_DIR` environment variable.
+ Defaults to `ENV`.
+ work_dir (str, optional): Specify which directory to save output images to.
+ Defaults to ``'./work_dir/tmp_dir'``.
+ description (dict): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ _UNBOUND_KERNEL_CLIENTS = asyncio.Queue()
+
+ def __init__(
+ self,
+ timeout: int = 20,
+ user_data_dir: str = 'ENV',
+ work_dir=os.path.join(tempfile.gettempdir(), 'tmp_dir'),
+ max_kernels: Optional[int] = None,
+ reuse_kernel: bool = True,
+ startup_rate: bool = 32,
+ connection_dir: str = tempfile.gettempdir(),
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(timeout, user_data_dir, work_dir, description, parser)
+ from traitlets.config import Config
+
+ c = Config()
+ c.KernelManager.transport = 'ipc'
+ self._amkm = AsyncMultiKernelManager(
+ config=c, connection_dir=connection_dir)
+ self._max_kernels = max_kernels
+ self._reuse_kernel = reuse_kernel
+ self._sem = asyncio.Semaphore(startup_rate)
+ self._lock = asyncio.Lock()
+
+ async def initialize(self, session_id: str):
+ session_id = str(session_id)
+ while True:
+ if session_id in self._KERNEL_CLIENTS:
+ return self._KERNEL_CLIENTS[session_id]
+ if self._reuse_kernel and not self._UNBOUND_KERNEL_CLIENTS.empty():
+ self._KERNEL_CLIENTS[
+ session_id] = await self._UNBOUND_KERNEL_CLIENTS.get()
+ return self._KERNEL_CLIENTS[session_id]
+ async with self._sem:
+ if self._max_kernels is None or len(
+ self._KERNEL_CLIENTS
+ ) + self._UNBOUND_KERNEL_CLIENTS.qsize() < self._max_kernels:
+ kernel_id = None
+ try:
+ kernel_id = await self._amkm.start_kernel()
+ kernel = self._amkm.get_kernel(kernel_id)
+ client = kernel.client()
+ _, error_stacktrace, stream_text = await async_run_code(
+ kernel,
+ START_CODE.format(self.user_data_dir),
+ shutdown_kernel=False)
+ # check if the output of START_CODE meets expectations
+ if not (error_stacktrace is None
+ and stream_text == ''):
+ raise RuntimeError
+ except Exception as e:
+ print(f'Starting kernel error: {e}')
+ if kernel_id:
+ await self._amkm.shutdown_kernel(kernel_id)
+ self._amkm.remove_kernel(kernel_id)
+ await asyncio.sleep(1)
+ continue
+ if self._max_kernels is None:
+ self._KERNEL_CLIENTS[session_id] = (kernel_id, kernel,
+ client)
+ return kernel_id, kernel, client
+ async with self._lock:
+ if len(self._KERNEL_CLIENTS
+ ) + self._UNBOUND_KERNEL_CLIENTS.qsize(
+ ) < self._max_kernels:
+ self._KERNEL_CLIENTS[session_id] = (kernel_id,
+ kernel, client)
+ return kernel_id, kernel, client
+ await self._amkm.shutdown_kernel(kernel_id)
+ self._amkm.remove_kernel(kernel_id)
+ await asyncio.sleep(1)
+
+ async def reset(self, session_id: str):
+ session_id = str(session_id)
+ if session_id not in self._KERNEL_CLIENTS:
+ return
+ _, kernel, _ = self._KERNEL_CLIENTS[session_id]
+ code = "get_ipython().run_line_magic('reset', '-f')\n" + \
+ START_CODE.format(self.user_data_dir)
+ await async_run_code(kernel, code, shutdown_kernel=False)
+
+ async def shutdown(self, session_id: str):
+ session_id = str(session_id)
+ if session_id in self._KERNEL_CLIENTS:
+ kernel_id, _, _ = self._KERNEL_CLIENTS.get(session_id)
+ await self._amkm.shutdown_kernel(kernel_id)
+ self._amkm.remove_kernel(kernel_id)
+ del self._KERNEL_CLIENTS[session_id]
+
+ async def close_session(self, session_id: str):
+ session_id = str(session_id)
+ if self._reuse_kernel:
+ if session_id in self._KERNEL_CLIENTS:
+ await self.reset(session_id)
+ await self._UNBOUND_KERNEL_CLIENTS.put(
+ self._KERNEL_CLIENTS.pop(session_id))
+ else:
+ await self.shutdown(session_id)
+
+ async def _call(self, command, timeout=None, session_id=None):
+ _, kernel, _ = await self.initialize(str(session_id))
+ result = await async_run_code(
+ kernel,
+ extract_code(command),
+ interrupt_after=timeout or self.timeout,
+ shutdown_kernel=False)
+ execute_result, error_stacktrace, stream_text = result
+ if error_stacktrace is not None:
+ ret = re.sub('^-*\n', '', escape_ansi(error_stacktrace))
+ if ret.endswith('KeyboardInterrupt: '):
+ ret = 'The code interpreter encountered a timeout error.'
+ status, ret = False, ret.strip()
+ elif execute_result is not None:
+ status, ret = True, dict(text=execute_result.get('text/plain', ''))
+ else:
+ status, ret = True, dict(text=stream_text.strip())
+ return status, ret
+
+ @tool_api
+ async def run(self,
+ command: str,
+ timeout: Optional[int] = None,
+ session_id: Optional[str] = None) -> ActionReturn:
+ r"""When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.
+
+ Args:
+ command (:class:`str`): Python code
+ timeout (:class:`Optional[int]`): Upper bound of waiting time for Python script execution.
+ """
+ tool_return = ActionReturn(url=None, args=None, type=self.name)
+ tool_return.args = dict(text=command)
+ succeed, result = await self._call(command, timeout, session_id)
+ if succeed:
+ text = result['text']
+ image = result.get('image', [])
+ resp = [dict(type='text', content=text)]
+ if image:
+ resp.extend([dict(type='image', content=im) for im in image])
+ tool_return.result = resp
+ # tool_return.result = dict(
+ # text=result['text'], image=result.get('image', [])[0])
+ tool_return.state = ActionStatusCode.SUCCESS
+ else:
+ tool_return.errmsg = result.get('text', '') if isinstance(
+ result, dict) else result
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+
+def extract_code(text):
+ import json5
+
+ # Match triple backtick blocks first
+ triple_match = re.search(r'```[^\n]*\n(.+?)```', text, re.DOTALL)
+ # Match single backtick blocks second
+ single_match = re.search(r'`([^`]*)`', text, re.DOTALL)
+ if triple_match:
+ text = triple_match.group(1)
+ elif single_match:
+ text = single_match.group(1)
+ else:
+ try:
+ text = json5.loads(text)['code']
+ except Exception:
+ pass
+ # If no code blocks found, return original text
+ return text
+
+
+def escape_ansi(line):
+ ansi_escape = re.compile(r'(?:\x1B[@-_]|[\x80-\x9F])[0-?]*[ -/]*[@-~]')
+ return ansi_escape.sub('', line)
+
+
+def publish_image_to_local(image_base64: str, work_dir='./work_dir/tmp_dir'):
+ import PIL.Image
+ image_file = str(uuid.uuid4()) + '.png'
+ local_image_file = os.path.join(work_dir, image_file)
+
+ png_bytes = base64.b64decode(image_base64)
+ assert isinstance(png_bytes, bytes)
+ bytes_io = io.BytesIO(png_bytes)
+ PIL.Image.open(bytes_io).save(local_image_file, 'png')
+
+ return local_image_file
+
+
+# local test for code interpreter
+def get_multiline_input(hint):
+ print(hint)
+ print('// Press ENTER to make a new line. Press CTRL-D to end input.')
+ lines = []
+ while True:
+ try:
+ line = input()
+ except EOFError: # CTRL-D
+ break
+ lines.append(line)
+ print('// Input received.')
+ if lines:
+ return '\n'.join(lines)
+ else:
+ return ''
+
+
+if __name__ == '__main__':
+ code_interpreter = IPythonInterpreter()
+ while True:
+ print(code_interpreter(get_multiline_input('Enter python code:')))
diff --git a/lagent/actions/ipython_manager.py b/lagent/actions/ipython_manager.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e8a2fdb1697be4d2e527c30c0542e7003b0bef8
--- /dev/null
+++ b/lagent/actions/ipython_manager.py
@@ -0,0 +1,220 @@
+import re
+import sys
+from collections import defaultdict
+from contextlib import nullcontext
+from io import StringIO
+from multiprocessing import Process, Queue
+from typing import List, Optional, Type, Union
+
+from filelock import FileLock
+from timeout_decorator import timeout as tm
+
+from ..schema import ActionReturn, ActionStatusCode
+from .base_action import BaseAction
+from .parser import BaseParser, JsonParser
+
+
+class IPythonProcess(Process):
+
+ def __init__(self,
+ in_q: Queue,
+ out_q: Queue,
+ timeout: int = 20,
+ ci_lock: str = None,
+ daemon: bool = True):
+ super().__init__(daemon=daemon)
+ self.in_q = in_q
+ self.out_q = out_q
+ self.timeout = timeout
+ self.session_id2shell = defaultdict(self.create_shell)
+ self.ci_lock = FileLock(
+ ci_lock) if ci_lock else nullcontext() # avoid core corruption
+ self._highlighting = re.compile(r'\x1b\[\d{,3}(;\d{,3}){,3}m')
+
+ def run(self):
+ while True:
+ msg = self.in_q.get()
+ if msg == 'reset':
+ for session_id, shell in self.session_id2shell.items():
+ with self.ci_lock:
+ try:
+ shell.reset(new_session=False)
+ # shell.run_line_magic('reset', '-sf')
+ except Exception:
+ self.session_id2shell[
+ session_id] = self.create_shell()
+ self.out_q.put('ok')
+ elif isinstance(msg, tuple) and len(msg) == 3:
+ i, session_id, code = msg
+ res = self.exec(session_id, code)
+ self.out_q.put((i, session_id, res))
+
+ def exec(self, session_id, code):
+ try:
+ shell = self.session_id2shell[session_id]
+ with StringIO() as io:
+ old_stdout = sys.stdout
+ sys.stdout = io
+ if self.timeout is False or self.timeout < 0:
+ shell.run_cell(self.extract_code(code))
+ else:
+ tm(self.timeout)(shell.run_cell)(self.extract_code(code))
+ sys.stdout = old_stdout
+ output = self._highlighting.sub('', io.getvalue().strip())
+ output = re.sub(r'^Out\[\d+\]: ', '', output)
+ if 'Error' in output or 'Traceback' in output:
+ output = output.lstrip('-').strip()
+ if output.startswith('TimeoutError'):
+ output = 'The code interpreter encountered a timeout error.'
+ return {'status': 'FAILURE', 'msg': output, 'code': code}
+ return {'status': 'SUCCESS', 'value': output, 'code': code}
+ except Exception as e:
+ return {'status': 'FAILURE', 'msg': str(e), 'code': code}
+
+ @staticmethod
+ def create_shell(enable_history: bool = False, in_memory: bool = True):
+ from IPython import InteractiveShell
+ from traitlets.config import Config
+
+ c = Config()
+ c.HistoryManager.enabled = enable_history
+ if in_memory:
+ c.HistoryManager.hist_file = ':memory:'
+ shell = InteractiveShell(config=c)
+ return shell
+
+ @staticmethod
+ def extract_code(text: str) -> str:
+ """Extract Python code from markup languages.
+
+ Args:
+ text (:class:`str`): Markdown-formatted text
+
+ Returns:
+ :class:`str`: Python code
+ """
+ import json5
+
+ # Match triple backtick blocks first
+ triple_match = re.search(r'```[^\n]*\n(.+?)```', text, re.DOTALL)
+ # Match single backtick blocks second
+ single_match = re.search(r'`([^`]*)`', text, re.DOTALL)
+ if triple_match:
+ text = triple_match.group(1)
+ elif single_match:
+ text = single_match.group(1)
+ else:
+ try:
+ text = json5.loads(text)['code']
+ except Exception:
+ pass
+ # If no code blocks found, return original text
+ return text
+
+
+class IPythonInteractiveManager(BaseAction):
+ """An interactive IPython shell manager for code execution"""
+
+ def __init__(
+ self,
+ max_workers: int = 50,
+ timeout: int = 20,
+ ci_lock: str = None,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+ self.max_workers = max_workers
+ self.timeout = timeout
+ self.ci_lock = ci_lock
+ self.id2queue = defaultdict(Queue)
+ self.id2process = {}
+ self.out_queue = Queue()
+
+ def __call__(self,
+ commands: Union[str, List[str]],
+ session_ids: Union[int, List[int]] = None):
+ if isinstance(commands, list):
+ batch_size = len(commands)
+ is_batch = True
+ else:
+ batch_size = 1
+ commands = [commands]
+ is_batch = False
+ if session_ids is None:
+ session_ids = range(batch_size)
+ elif isinstance(session_ids, int):
+ session_ids = [session_ids]
+ if len(session_ids) != batch_size or len(session_ids) != len(
+ set(session_ids)):
+ raise ValueError(
+ 'the size of `session_ids` must equal that of `commands`')
+ try:
+ exec_results = self.run_code_blocks([
+ (session_id, command)
+ for session_id, command in zip(session_ids, commands)
+ ])
+ except KeyboardInterrupt:
+ self.clear()
+ exit(1)
+ action_returns = []
+ for result, code in zip(exec_results, commands):
+ action_return = ActionReturn({'command': code}, type=self.name)
+ if result['status'] == 'SUCCESS':
+ action_return.result = [
+ dict(type='text', content=result['value'])
+ ]
+ action_return.state = ActionStatusCode.SUCCESS
+ else:
+ action_return.errmsg = result['msg']
+ action_return.state = ActionStatusCode.API_ERROR
+ action_returns.append(action_return)
+ if not is_batch:
+ return action_returns[0]
+ return action_returns
+
+ def process_code(self, index, session_id, code):
+ ipy_id = session_id % self.max_workers
+ input_queue = self.id2queue[ipy_id]
+ proc = self.id2process.setdefault(
+ ipy_id,
+ IPythonProcess(
+ input_queue,
+ self.out_queue,
+ self.timeout,
+ self.ci_lock,
+ daemon=True))
+ if not proc.is_alive():
+ proc.start()
+ input_queue.put((index, session_id, code))
+
+ def run_code_blocks(self, session_code_pairs):
+ size = len(session_code_pairs)
+ for index, (session_id, code) in enumerate(session_code_pairs):
+ self.process_code(index, session_id, code)
+ results = []
+ while len(results) < size:
+ msg = self.out_queue.get()
+ if isinstance(msg, tuple) and len(msg) == 3:
+ index, _, result = msg
+ results.append((index, result))
+ results.sort()
+ return [item[1] for item in results]
+
+ def clear(self):
+ self.id2queue.clear()
+ for proc in self.id2process.values():
+ proc.terminate()
+ self.id2process.clear()
+ while not self.out_queue.empty():
+ self.out_queue.get()
+
+ def reset(self):
+ cnt = 0
+ for q in self.id2queue.values():
+ q.put('reset')
+ cnt += 1
+ while cnt > 0:
+ msg = self.out_queue.get()
+ if msg == 'ok':
+ cnt -= 1
diff --git a/lagent/actions/parser.py b/lagent/actions/parser.py
new file mode 100644
index 0000000000000000000000000000000000000000..4188ae39ee27f61e7219ab856414827add1cdab7
--- /dev/null
+++ b/lagent/actions/parser.py
@@ -0,0 +1,146 @@
+import json
+import re
+from ast import literal_eval
+from typing import Any, List, Union
+
+
+class ParseError(Exception):
+ """Parsing exception class."""
+
+ def __init__(self, err_msg: str):
+ self.err_msg = err_msg
+
+
+class BaseParser:
+ """Base parser to process inputs and outputs of actions.
+
+ Args:
+ action (:class:`BaseAction`): action to validate
+
+ Attributes:
+ PARAMETER_DESCRIPTION (:class:`str`): declare the input format which
+ LLMs should follow when generating arguments for decided tools.
+ """
+
+ PARAMETER_DESCRIPTION: str = ''
+
+ def __init__(self, action):
+ self.action = action
+ self._api2param = {}
+ self._api2required = {}
+ # perform basic argument validation
+ if action.description:
+ for api in action.description.get('api_list',
+ [action.description]):
+ name = (f'{action.name}.{api["name"]}'
+ if self.action.is_toolkit else api['name'])
+ required_parameters = set(api['required'])
+ all_parameters = {j['name'] for j in api['parameters']}
+ if not required_parameters.issubset(all_parameters):
+ raise ValueError(
+ f'unknown parameters for function "{name}": '
+ f'{required_parameters - all_parameters}')
+ if self.PARAMETER_DESCRIPTION:
+ api['parameter_description'] = self.PARAMETER_DESCRIPTION
+ api_name = api['name'] if self.action.is_toolkit else 'run'
+ self._api2param[api_name] = api['parameters']
+ self._api2required[api_name] = api['required']
+
+ def parse_inputs(self, inputs: str, name: str = 'run') -> dict:
+ """Parse inputs LLMs generate for the action.
+
+ Args:
+ inputs (:class:`str`): input string extracted from responses
+
+ Returns:
+ :class:`dict`: processed input
+ """
+ inputs = {self._api2param[name][0]['name']: inputs}
+ return inputs
+
+ def parse_outputs(self, outputs: Any) -> List[dict]:
+ """Parser outputs returned by the action.
+
+ Args:
+ outputs (:class:`Any`): raw output of the action
+
+ Returns:
+ :class:`List[dict]`: processed output of which each member is a
+ dictionary with two keys - 'type' and 'content'.
+ """
+ if isinstance(outputs, dict):
+ outputs = json.dumps(outputs, ensure_ascii=False)
+ elif not isinstance(outputs, str):
+ outputs = str(outputs)
+ return [{
+ 'type': 'text',
+ 'content': outputs.encode('gbk', 'ignore').decode('gbk')
+ }]
+
+
+class JsonParser(BaseParser):
+ """Json parser to convert input string into a dictionary.
+
+ Args:
+ action (:class:`BaseAction`): action to validate
+ """
+
+ PARAMETER_DESCRIPTION = (
+ 'If you call this tool, you must pass arguments in '
+ 'the JSON format {key: value}, where the key is the parameter name.')
+
+ def parse_inputs(self,
+ inputs: Union[str, dict],
+ name: str = 'run') -> dict:
+ if not isinstance(inputs, dict):
+ try:
+ match = re.search(r'^\s*(```json\n)?(.*)\n```\s*$', inputs,
+ re.S)
+ if match:
+ inputs = match.group(2).strip()
+ inputs = json.loads(inputs)
+ except json.JSONDecodeError as exc:
+ raise ParseError(f'invalid json format: {inputs}') from exc
+ input_keys = set(inputs)
+ all_keys = {param['name'] for param in self._api2param[name]}
+ if not input_keys.issubset(all_keys):
+ raise ParseError(f'unknown arguments: {input_keys - all_keys}')
+ required_keys = set(self._api2required[name])
+ if not input_keys.issuperset(required_keys):
+ raise ParseError(
+ f'missing required arguments: {required_keys - input_keys}')
+ return inputs
+
+
+class TupleParser(BaseParser):
+ """Tuple parser to convert input string into a tuple.
+
+ Args:
+ action (:class:`BaseAction`): action to validate
+ """
+
+ PARAMETER_DESCRIPTION = (
+ 'If you call this tool, you must pass arguments in the tuple format '
+ 'like (arg1, arg2, arg3), and the arguments are ordered.')
+
+ def parse_inputs(self,
+ inputs: Union[str, tuple],
+ name: str = 'run') -> dict:
+ if not isinstance(inputs, tuple):
+ try:
+ inputs = literal_eval(inputs)
+ except Exception as exc:
+ raise ParseError(f'invalid tuple format: {inputs}') from exc
+ if len(inputs) < len(self._api2required[name]):
+ raise ParseError(
+ f'API takes {len(self._api2required[name])} required positional '
+ f'arguments but {len(inputs)} were given')
+ if len(inputs) > len(self._api2param[name]):
+ raise ParseError(
+ f'API takes {len(self._api2param[name])} positional arguments '
+ f'but {len(inputs)} were given')
+ inputs = {
+ self._api2param[name][i]['name']: item
+ for i, item in enumerate(inputs)
+ }
+ return inputs
diff --git a/lagent/actions/ppt.py b/lagent/actions/ppt.py
new file mode 100644
index 0000000000000000000000000000000000000000..38bcfa8472519d282421d7776c77781658b8d588
--- /dev/null
+++ b/lagent/actions/ppt.py
@@ -0,0 +1,233 @@
+from typing import Dict, Optional, Type
+
+from asyncer import asyncify
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.actions.parser import BaseParser, JsonParser
+
+THEME_MAPPING = {
+ 'Default': {
+ 'template': None,
+ 'title': 'Title Slide',
+ 'single': 'Title and Content',
+ 'two': 'Two Content',
+ }
+}
+
+
+class PPT(BaseAction):
+ """Plugin to create ppt slides with text, paragraph, images in good looking styles."""
+
+ def __init__(
+ self,
+ theme_mapping: Optional[Dict[str, dict]] = None,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ):
+ super().__init__(description, parser)
+ self.theme_mapping = theme_mapping or THEME_MAPPING
+ self.pointer = None
+ self.location = None
+
+ @tool_api(explode_return=True)
+ def create_file(self, theme: str, abs_location: str) -> dict:
+ """Create a pptx file with specific themes.
+
+ Args:
+ theme (:class:`str`): the theme used. The value should be one of ['Default'].
+ abs_location (:class:`str`): the ppt file's absolute location
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """
+ from pptx import Presentation
+
+ self.location = abs_location
+ try:
+ self.pointer = Presentation(self.theme_mapping[theme]['template'])
+ self.pointer.slide_master.name = theme
+ # print('created')
+ except Exception as e:
+ print(e)
+ return dict(status='created a ppt file.')
+
+ @tool_api(explode_return=True)
+ def add_first_page(self, title: str, subtitle: str) -> dict:
+ """Add the first page of ppt.
+
+ Args:
+ title (:class:`str`): the title of ppt
+ subtitle (:class:`str`): the subtitle of ppt
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """
+ layout_name = self.theme_mapping[self.pointer.slide_master.name]['title']
+ layout = next(i for i in self.pointer.slide_master.slide_layouts if i.name == layout_name)
+ slide = self.pointer.slides.add_slide(layout)
+ ph_title, ph_subtitle = slide.placeholders
+ ph_title.text = title
+ if subtitle:
+ ph_subtitle.text = subtitle
+ return dict(status='added page')
+
+ @tool_api(explode_return=True)
+ def add_text_page(self, title: str, bullet_items: str) -> dict:
+ """Add text page of ppt.
+
+ Args:
+ title (:class:`str`): the title of the page
+ bullet_items (:class:`str`): bullet_items should be string, for multiple bullet items, please use [SPAN] to separate them.
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """ # noqa: E501
+ layout_name = self.theme_mapping[self.pointer.slide_master.name]['single']
+ layout = next(i for i in self.pointer.slide_master.slide_layouts if i.name == layout_name)
+ slide = self.pointer.slides.add_slide(layout)
+ ph_title, ph_body = slide.placeholders
+ ph_title.text = title
+ ph = ph_body
+ tf = ph.text_frame
+ for i, item in enumerate(bullet_items.split('[SPAN]')):
+ if i == 0:
+ p = tf.paragraphs[0]
+ else:
+ p = tf.add_paragraph()
+ p.text = item.strip()
+ p.level = 0
+ return dict(status='added page')
+
+ @tool_api(explode_return=True)
+ def add_text_image_page(self, title: str, bullet_items: str, image: str) -> dict:
+ """Add a text page with one image. Image should be a path.
+
+ Args:
+ title (:class:`str`): the title of the page
+ bullet_items (:class:`str`): bullet_items should be string, for multiple bullet items, please use [SPAN] to separate them.
+ image (:class:`str`): the path of the image
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """ # noqa: E501
+ from PIL import Image
+
+ layout_name = self.theme_mapping[self.pointer.slide_master.name]['two']
+ layout = next(i for i in self.pointer.slide_master.slide_layouts if i.name == layout_name)
+ slide = self.pointer.slides.add_slide(layout)
+ ph_title, ph_body1, ph_body2 = slide.placeholders
+ ph_title.text = title
+ ph = ph_body2
+ image = Image.open(image)
+ image_pil = image.to_pil()
+ left = ph.left
+ width = ph.width
+ height = int(width / image_pil.width * image_pil.height)
+ top = (ph.top + (ph.top + ph.height)) // 2 - height // 2
+ slide.shapes.add_picture(image.to_path(), left, top, width, height)
+
+ ph = ph_body1
+ tf = ph.text_frame
+ for i, item in enumerate(bullet_items.split('[SPAN]')):
+ if i == 0:
+ p = tf.paragraphs[0]
+ else:
+ p = tf.add_paragraph()
+ p.text = item.strip()
+ p.level = 0
+
+ return dict(status='added page')
+
+ @tool_api(explode_return=True)
+ def submit_file(self) -> dict:
+ """When all steps done, YOU MUST use submit_file() to submit your work.
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """
+ # file_path = os.path.join(self.CACHE_DIR, f'{self._return_timestamp()}.pptx')
+ # self.pointer.save(file_path)
+ # retreival_url = upload_file(file_path)
+ self.pointer.save(self.location)
+ return dict(status=f'submitted. view ppt at {self.location}')
+
+
+class AsyncPPT(AsyncActionMixin, PPT):
+ """Plugin to create ppt slides with text, paragraph, images in good looking styles."""
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def create_file(self, theme: str, abs_location: str) -> dict:
+ """Create a pptx file with specific themes.
+
+ Args:
+ theme (:class:`str`): the theme used. The value should be one of ['Default'].
+ abs_location (:class:`str`): the ppt file's absolute location
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """
+ return super().create_file(theme, abs_location)
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def add_first_page(self, title: str, subtitle: str) -> dict:
+ """Add the first page of ppt.
+
+ Args:
+ title (:class:`str`): the title of ppt
+ subtitle (:class:`str`): the subtitle of ppt
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """
+ return super().add_first_page(title, subtitle)
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def add_text_page(self, title: str, bullet_items: str) -> dict:
+ """Add text page of ppt.
+
+ Args:
+ title (:class:`str`): the title of the page
+ bullet_items (:class:`str`): bullet_items should be string, for multiple bullet items, please use [SPAN] to separate them.
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """ # noqa: E501
+ return super().add_text_page(title, bullet_items)
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def add_text_image_page(self, title: str, bullet_items: str, image: str) -> dict:
+ """Add a text page with one image. Image should be a path.
+
+ Args:
+ title (:class:`str`): the title of the page
+ bullet_items (:class:`str`): bullet_items should be string, for multiple bullet items, please use [SPAN] to separate them.
+ image (:class:`str`): the path of the image
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """ # noqa: E501
+ return super().add_text_image_page(title, bullet_items, image)
+
+ @tool_api(explode_return=True)
+ @asyncify
+ def submit_file(self) -> dict:
+ """When all steps done, YOU MUST use submit_file() to submit your work.
+
+ Returns:
+ :class:`dict`: operation status
+ * status: the result of the execution
+ """
+ return super().submit_file()
diff --git a/lagent/actions/python_interpreter.py b/lagent/actions/python_interpreter.py
new file mode 100644
index 0000000000000000000000000000000000000000..8bd3266b3ac8c642023161d21db969c26547fc3d
--- /dev/null
+++ b/lagent/actions/python_interpreter.py
@@ -0,0 +1,176 @@
+# flake8: noqa: E501
+import copy
+import io
+from contextlib import redirect_stdout
+from typing import Any, Optional, Type
+
+from asyncer import asyncify
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.actions.parser import BaseParser, JsonParser
+from lagent.schema import ActionReturn, ActionStatusCode
+
+
+class GenericRuntime:
+ GLOBAL_DICT = {}
+ LOCAL_DICT = None
+ HEADERS = []
+
+ def __init__(self):
+ self._global_vars = copy.copy(self.GLOBAL_DICT)
+ self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
+
+ for c in self.HEADERS:
+ self.exec_code(c)
+
+ def exec_code(self, code_piece: str) -> None:
+ exec(code_piece, self._global_vars)
+
+ def eval_code(self, expr: str) -> Any:
+ return eval(expr, self._global_vars)
+
+
+class PythonInterpreter(BaseAction):
+ """A Python executor that can execute Python scripts.
+
+ Args:
+ answer_symbol (str, Optional): the answer symbol from LLM. Defaults to ``None``.
+ answer_expr (str, Optional): the answer function name of the Python
+ script. Defaults to ``'solution()'``.
+ answer_from_stdout (boolean, Optional): whether the execution results is from
+ stdout. Defaults to ``False``.
+ timeout (int, Optional): Upper bound of waiting time for Python script execution.
+ Defaults to ``20``.
+ description (dict, Optional): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ def __init__(
+ self,
+ answer_symbol: Optional[str] = None,
+ answer_expr: Optional[str] = 'solution()',
+ answer_from_stdout: bool = False,
+ timeout: int = 20,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ ) -> None:
+ super().__init__(description, parser)
+ self.answer_symbol = answer_symbol
+ self.answer_expr = answer_expr
+ self.answer_from_stdout = answer_from_stdout
+ self.timeout = timeout
+
+ @tool_api
+ def run(self, command: str) -> ActionReturn:
+ """用来执行Python代码。代码必须是一个函数,函数名必须得是 'solution',代码对应你的思考过程。代码实例格式如下:
+
+ ```python
+ # import 依赖包
+ import xxx
+ def solution():
+ # 初始化一些变量
+ variable_names_with_real_meaning = xxx
+ # 步骤一
+ mid_variable = func(variable_names_with_real_meaning)
+ # 步骤 x
+ mid_variable = func(mid_variable)
+ # 最后结果
+ final_answer = func(mid_variable)
+ return final_answer
+ ```
+
+ Args:
+ command (:class:`str`): Python code snippet
+ """
+ from func_timeout import FunctionTimedOut, func_set_timeout
+
+ self.runtime = GenericRuntime()
+ try:
+ tool_return = func_set_timeout(self.timeout)(self._call)(command)
+ except FunctionTimedOut as e:
+ tool_return = ActionReturn(type=self.name)
+ tool_return.errmsg = repr(e)
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+ def _call(self, command: str) -> ActionReturn:
+ tool_return = ActionReturn(type=self.name)
+ try:
+ if '```python' in command:
+ command = command.split('```python')[1].split('```')[0]
+ elif '```' in command:
+ command = command.split('```')[1].split('```')[0]
+ tool_return.args = dict(text='```python\n' + command + '\n```')
+ command = command.split('\n')
+
+ if self.answer_from_stdout:
+ program_io = io.StringIO()
+ with redirect_stdout(program_io):
+ self.runtime.exec_code('\n'.join(command))
+ program_io.seek(0)
+ res = program_io.readlines()[-1]
+ elif self.answer_symbol:
+ self.runtime.exec_code('\n'.join(command))
+ res = self.runtime._global_vars[self.answer_symbol]
+ elif self.answer_expr:
+ self.runtime.exec_code('\n'.join(command))
+ res = self.runtime.eval_code(self.answer_expr)
+ else:
+ self.runtime.exec_code('\n'.join(command[:-1]))
+ res = self.runtime.eval_code(command[-1])
+ except Exception as e:
+ tool_return.errmsg = repr(e)
+ tool_return.type = self.name
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+ try:
+ tool_return.result = [dict(type='text', content=str(res))]
+ tool_return.state = ActionStatusCode.SUCCESS
+ except Exception as e:
+ tool_return.errmsg = repr(e)
+ tool_return.type = self.name
+ tool_return.state = ActionStatusCode.API_ERROR
+ return tool_return
+
+
+class AsyncPythonInterpreter(AsyncActionMixin, PythonInterpreter):
+ """A Python executor that can execute Python scripts.
+
+ Args:
+ answer_symbol (str, Optional): the answer symbol from LLM. Defaults to ``None``.
+ answer_expr (str, Optional): the answer function name of the Python
+ script. Defaults to ``'solution()'``.
+ answer_from_stdout (boolean, Optional): whether the execution results is from
+ stdout. Defaults to ``False``.
+ timeout (int, Optional): Upper bound of waiting time for Python script execution.
+ Defaults to ``20``.
+ description (dict, Optional): The description of the action. Defaults to ``None``.
+ parser (Type[BaseParser]): The parser class to process the
+ action's inputs and outputs. Defaults to :class:`JsonParser`.
+ """
+
+ @tool_api
+ @asyncify
+ def run(self, command: str) -> ActionReturn:
+ """用来执行Python代码。代码必须是一个函数,函数名必须得是 'solution',代码对应你的思考过程。代码实例格式如下:
+
+ ```python
+ # import 依赖包
+ import xxx
+ def solution():
+ # 初始化一些变量
+ variable_names_with_real_meaning = xxx
+ # 步骤一
+ mid_variable = func(variable_names_with_real_meaning)
+ # 步骤 x
+ mid_variable = func(mid_variable)
+ # 最后结果
+ final_answer = func(mid_variable)
+ return final_answer
+ ```
+
+ Args:
+ command (:class:`str`): Python code snippet
+ """
+ return super().run(command)
diff --git a/lagent/actions/weather_query.py b/lagent/actions/weather_query.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbe3e991dbca34e0a6d373d62d457c7237317741
--- /dev/null
+++ b/lagent/actions/weather_query.py
@@ -0,0 +1,71 @@
+import os
+import requests
+from lagent.actions.base_action import BaseAction, tool_api
+from lagent.schema import ActionReturn, ActionStatusCode
+
+class WeatherQuery(BaseAction):
+ def __init__(self):
+ super().__init__()
+ self.api_key = os.getenv("weather_token")
+ print(self.api_key)
+ if not self.api_key:
+ raise EnvironmentError("未找到环境变量 'token'。请设置你的和风天气 API Key 到 'weather_token' 环境变量中,比如export weather_token='xxx' ")
+
+ @tool_api
+ def run(self, location: str) -> dict:
+ """
+ 查询实时天气信息。
+
+ Args:
+ location (str): 要查询的地点名称、LocationID 或经纬度坐标(如 "101010100" 或 "116.41,39.92")。
+
+ Returns:
+ dict: 包含天气信息的字典
+ * location: 地点名称
+ * weather: 天气状况
+ * temperature: 当前温度
+ * wind_direction: 风向
+ * wind_speed: 风速(公里/小时)
+ * humidity: 相对湿度(%)
+ * report_time: 数据报告时间
+ """
+ try:
+ # 如果 location 不是坐标格式(例如 "116.41,39.92"),则调用 GeoAPI 获取 LocationID
+ if not ("," in location and location.replace(",", "").replace(".", "").isdigit()):
+ # 使用 GeoAPI 获取 LocationID
+ geo_url = f"https://geoapi.qweather.com/v2/city/lookup?location={location}&key={self.api_key}"
+ geo_response = requests.get(geo_url)
+ geo_data = geo_response.json()
+
+ if geo_data.get("code") != "200" or not geo_data.get("location"):
+ raise Exception(f"GeoAPI 返回错误码:{geo_data.get('code')} 或未找到位置")
+
+ location = geo_data["location"][0]["id"]
+
+ # 构建天气查询的 API 请求 URL
+ weather_url = f"https://devapi.qweather.com/v7/weather/now?location={location}&key={self.api_key}"
+ response = requests.get(weather_url)
+ data = response.json()
+
+ # 检查 API 响应码
+ if data.get("code") != "200":
+ raise Exception(f"Weather API 返回错误码:{data.get('code')}")
+
+ # 解析和组织天气信息
+ weather_info = {
+ "location": location,
+ "weather": data["now"]["text"],
+ "temperature": data["now"]["temp"] + "°C",
+ "wind_direction": data["now"]["windDir"],
+ "wind_speed": data["now"]["windSpeed"] + " km/h",
+ "humidity": data["now"]["humidity"] + "%",
+ "report_time": data["updateTime"]
+ }
+
+ return {"result": weather_info}
+
+ except Exception as exc:
+ return ActionReturn(
+ errmsg=f"WeatherQuery 异常:{exc}",
+ state=ActionStatusCode.HTTP_ERROR
+ )
\ No newline at end of file
diff --git a/lagent/actions/web_browser.py b/lagent/actions/web_browser.py
new file mode 100644
index 0000000000000000000000000000000000000000..432fe27eee69175220aea506b415278ed97ea767
--- /dev/null
+++ b/lagent/actions/web_browser.py
@@ -0,0 +1,908 @@
+import asyncio
+import hashlib
+import hmac
+import json
+import logging
+import random
+import re
+import time
+import warnings
+from concurrent.futures import ThreadPoolExecutor, as_completed
+from datetime import datetime
+from http.client import HTTPSConnection
+from typing import List, Optional, Tuple, Type, Union
+
+import aiohttp
+import aiohttp.client_exceptions
+import requests
+from asyncache import cached as acached
+from bs4 import BeautifulSoup
+from cachetools import TTLCache, cached
+from duckduckgo_search import DDGS, AsyncDDGS
+
+from lagent.actions.base_action import AsyncActionMixin, BaseAction, tool_api
+from lagent.actions.parser import BaseParser, JsonParser
+from lagent.utils import async_as_completed
+
+
+class BaseSearch:
+
+ def __init__(self, topk: int = 3, black_list: List[str] = None):
+ self.topk = topk
+ self.black_list = black_list
+
+ def _filter_results(self, results: List[tuple]) -> dict:
+ filtered_results = {}
+ count = 0
+ for url, snippet, title in results:
+ if all(domain not in url
+ for domain in self.black_list) and not url.endswith('.pdf'):
+ filtered_results[count] = {
+ 'url': url,
+ 'summ': json.dumps(snippet, ensure_ascii=False)[1:-1],
+ 'title': title
+ }
+ count += 1
+ if count >= self.topk:
+ break
+ return filtered_results
+
+
+class DuckDuckGoSearch(BaseSearch):
+
+ def __init__(self,
+ topk: int = 3,
+ black_list: List[str] = [
+ 'enoN',
+ 'youtube.com',
+ 'bilibili.com',
+ 'researchgate.net',
+ ],
+ **kwargs):
+ self.proxy = kwargs.get('proxy')
+ self.timeout = kwargs.get('timeout', 30)
+ super().__init__(topk, black_list)
+
+ @cached(cache=TTLCache(maxsize=100, ttl=600))
+ def search(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = self._call_ddgs(
+ query, timeout=self.timeout, proxy=self.proxy)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ time.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from DuckDuckGo after retries.')
+
+ @acached(cache=TTLCache(maxsize=100, ttl=600))
+ async def asearch(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ ddgs = AsyncDDGS(timeout=self.timeout, proxy=self.proxy)
+ response = await ddgs.atext(query.strip("'"), max_results=10)
+ return self._parse_response(response)
+ except Exception as e:
+ if isinstance(e, asyncio.TimeoutError):
+ logging.exception('Request to DDGS timed out.')
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ await asyncio.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from DuckDuckGo after retries.')
+
+ async def _async_call_ddgs(self, query: str, **kwargs) -> dict:
+ ddgs = DDGS(**kwargs)
+ try:
+ response = await asyncio.wait_for(
+ asyncio.to_thread(ddgs.text, query.strip("'"), max_results=10),
+ timeout=self.timeout)
+ return response
+ except asyncio.TimeoutError:
+ logging.exception('Request to DDGS timed out.')
+ raise
+
+ def _call_ddgs(self, query: str, **kwargs) -> dict:
+ loop = asyncio.new_event_loop()
+ asyncio.set_event_loop(loop)
+ try:
+ response = loop.run_until_complete(
+ self._async_call_ddgs(query, **kwargs))
+ return response
+ finally:
+ loop.close()
+
+ def _parse_response(self, response: dict) -> dict:
+ raw_results = []
+ for item in response:
+ raw_results.append(
+ (item['href'], item['description']
+ if 'description' in item else item['body'], item['title']))
+ return self._filter_results(raw_results)
+
+
+class BingSearch(BaseSearch):
+
+ def __init__(self,
+ api_key: str,
+ region: str = 'zh-CN',
+ topk: int = 3,
+ black_list: List[str] = [
+ 'enoN',
+ 'youtube.com',
+ 'bilibili.com',
+ 'researchgate.net',
+ ],
+ **kwargs):
+ self.api_key = api_key
+ self.market = region
+ self.proxy = kwargs.get('proxy')
+ super().__init__(topk, black_list)
+
+ @cached(cache=TTLCache(maxsize=100, ttl=600))
+ def search(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = self._call_bing_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ time.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Bing Search after retries.')
+
+ @acached(cache=TTLCache(maxsize=100, ttl=600))
+ async def asearch(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = await self._async_call_bing_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ await asyncio.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Bing Search after retries.')
+
+ def _call_bing_api(self, query: str) -> dict:
+ endpoint = 'https://api.bing.microsoft.com/v7.0/search'
+ params = {'q': query, 'mkt': self.market, 'count': f'{self.topk * 2}'}
+ headers = {'Ocp-Apim-Subscription-Key': self.api_key}
+ response = requests.get(
+ endpoint, headers=headers, params=params, proxies=self.proxy)
+ response.raise_for_status()
+ return response.json()
+
+ async def _async_call_bing_api(self, query: str) -> dict:
+ endpoint = 'https://api.bing.microsoft.com/v7.0/search'
+ params = {'q': query, 'mkt': self.market, 'count': f'{self.topk * 2}'}
+ headers = {'Ocp-Apim-Subscription-Key': self.api_key}
+ async with aiohttp.ClientSession(raise_for_status=True) as session:
+ async with session.get(
+ endpoint,
+ headers=headers,
+ params=params,
+ proxy=self.proxy and
+ (self.proxy.get('http') or self.proxy.get('https'))) as resp:
+ return await resp.json()
+
+ def _parse_response(self, response: dict) -> dict:
+ webpages = {
+ w['id']: w
+ for w in response.get('webPages', {}).get('value', [])
+ }
+ raw_results = []
+
+ for item in response.get('rankingResponse',
+ {}).get('mainline', {}).get('items', []):
+ if item['answerType'] == 'WebPages':
+ webpage = webpages.get(item['value']['id'])
+ if webpage:
+ raw_results.append(
+ (webpage['url'], webpage['snippet'], webpage['name']))
+ elif item['answerType'] == 'News' and item['value'][
+ 'id'] == response.get('news', {}).get('id'):
+ for news in response.get('news', {}).get('value', []):
+ raw_results.append(
+ (news['url'], news['description'], news['name']))
+
+ return self._filter_results(raw_results)
+
+
+class BraveSearch(BaseSearch):
+ """
+ Wrapper around the Brave Search API.
+
+ To use, you should pass your Brave Search API key to the constructor.
+
+ Args:
+ api_key (str): API KEY to use Brave Search API.
+ You can create a free API key at https://api.search.brave.com/app/keys.
+ search_type (str): Brave Search API supports ['web', 'news', 'images', 'videos'],
+ currently only supports 'news' and 'web'.
+ topk (int): The number of search results returned in response from API search results.
+ region (str): The country code string. Specifies the country where the search results come from.
+ language (str): The language code string. Specifies the preferred language for the search results.
+ extra_snippets (bool): Allows retrieving up to 5 additional snippets, which are alternative excerpts from the search results.
+ **kwargs: Any other parameters related to the Brave Search API. Find more details at
+ https://api.search.brave.com/app/documentation/web-search/get-started.
+ """
+
+ def __init__(self,
+ api_key: str,
+ region: str = 'ALL',
+ language: str = 'zh-hans',
+ extra_snippests: bool = True,
+ topk: int = 3,
+ black_list: List[str] = [
+ 'enoN',
+ 'youtube.com',
+ 'bilibili.com',
+ 'researchgate.net',
+ ],
+ **kwargs):
+ self.api_key = api_key
+ self.market = region
+ self.proxy = kwargs.get('proxy')
+ self.language = language
+ self.extra_snippests = extra_snippests
+ self.search_type = kwargs.get('search_type', 'web')
+ self.kwargs = kwargs
+ super().__init__(topk, black_list)
+
+ @cached(cache=TTLCache(maxsize=100, ttl=600))
+ def search(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = self._call_brave_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ time.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Brave Search after retries.')
+
+ @acached(cache=TTLCache(maxsize=100, ttl=600))
+ async def asearch(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = await self._async_call_brave_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ await asyncio.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Brave Search after retries.')
+
+ def _call_brave_api(self, query: str) -> dict:
+ endpoint = f'https://api.search.brave.com/res/v1/{self.search_type}/search'
+ params = {
+ 'q': query,
+ 'country': self.market,
+ 'search_lang': self.language,
+ 'extra_snippets': self.extra_snippests,
+ 'count': self.topk,
+ **{
+ key: value
+ for key, value in self.kwargs.items() if value is not None
+ },
+ }
+ headers = {
+ 'X-Subscription-Token': self.api_key or '',
+ 'Accept': 'application/json'
+ }
+ response = requests.get(
+ endpoint, headers=headers, params=params, proxies=self.proxy)
+ response.raise_for_status()
+ return response.json()
+
+ async def _async_call_brave_api(self, query: str) -> dict:
+ endpoint = f'https://api.search.brave.com/res/v1/{self.search_type}/search'
+ params = {
+ 'q': query,
+ 'country': self.market,
+ 'search_lang': self.language,
+ 'extra_snippets': self.extra_snippests,
+ 'count': self.topk,
+ **{
+ key: value
+ for key, value in self.kwargs.items() if value is not None
+ },
+ }
+ headers = {
+ 'X-Subscription-Token': self.api_key or '',
+ 'Accept': 'application/json'
+ }
+ async with aiohttp.ClientSession(raise_for_status=True) as session:
+ async with session.get(
+ endpoint,
+ headers=headers,
+ params=params,
+ proxy=self.proxy and
+ (self.proxy.get('http') or self.proxy.get('https'))) as resp:
+ return await resp.json()
+
+ def _parse_response(self, response: dict) -> dict:
+ if self.search_type == 'web':
+ filtered_result = response.get('web', {}).get('results', [])
+ else:
+ filtered_result = response.get('results', {})
+ raw_results = []
+
+ for item in filtered_result:
+ raw_results.append((
+ item.get('url', ''),
+ ' '.join(
+ filter(None, [
+ item.get('description'),
+ *item.get('extra_snippets', [])
+ ])),
+ item.get('title', ''),
+ ))
+ return self._filter_results(raw_results)
+
+
+class GoogleSearch(BaseSearch):
+ """
+ Wrapper around the Serper.dev Google Search API.
+
+ To use, you should pass your serper API key to the constructor.
+
+ Args:
+ api_key (str): API KEY to use serper google search API.
+ You can create a free API key at https://serper.dev.
+ search_type (str): Serper API supports ['search', 'images', 'news',
+ 'places'] types of search, currently we only support 'search' and 'news'.
+ topk (int): The number of search results returned in response from api search results.
+ **kwargs: Any other parameters related to the Serper API. Find more details at
+ https://serper.dev/playground
+ """
+
+ result_key_for_type = {
+ 'news': 'news',
+ 'places': 'places',
+ 'images': 'images',
+ 'search': 'organic',
+ }
+
+ def __init__(self,
+ api_key: str,
+ topk: int = 3,
+ black_list: List[str] = [
+ 'enoN',
+ 'youtube.com',
+ 'bilibili.com',
+ 'researchgate.net',
+ ],
+ **kwargs):
+ self.api_key = api_key
+ self.proxy = kwargs.get('proxy')
+ self.search_type = kwargs.get('search_type', 'search')
+ self.kwargs = kwargs
+ super().__init__(topk, black_list)
+
+ @cached(cache=TTLCache(maxsize=100, ttl=600))
+ def search(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = self._call_serper_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ time.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Google Serper Search after retries.'
+ )
+
+ @acached(cache=TTLCache(maxsize=100, ttl=600))
+ async def asearch(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = await self._async_call_serper_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ await asyncio.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Google Serper Search after retries.'
+ )
+
+ def _call_serper_api(self, query: str) -> dict:
+ endpoint = f'https://google.serper.dev/{self.search_type}'
+ params = {
+ 'q': query,
+ 'num': self.topk,
+ **{
+ key: value
+ for key, value in self.kwargs.items() if value is not None
+ },
+ }
+ headers = {
+ 'X-API-KEY': self.api_key or '',
+ 'Content-Type': 'application/json'
+ }
+ response = requests.get(
+ endpoint, headers=headers, params=params, proxies=self.proxy)
+ response.raise_for_status()
+ return response.json()
+
+ async def _async_call_serper_api(self, query: str) -> dict:
+ endpoint = f'https://google.serper.dev/{self.search_type}'
+ params = {
+ 'q': query,
+ 'num': self.topk,
+ **{
+ key: value
+ for key, value in self.kwargs.items() if value is not None
+ },
+ }
+ headers = {
+ 'X-API-KEY': self.api_key or '',
+ 'Content-Type': 'application/json'
+ }
+ async with aiohttp.ClientSession(raise_for_status=True) as session:
+ async with session.get(
+ endpoint,
+ headers=headers,
+ params=params,
+ proxy=self.proxy and
+ (self.proxy.get('http') or self.proxy.get('https'))) as resp:
+ return await resp.json()
+
+ def _parse_response(self, response: dict) -> dict:
+ raw_results = []
+
+ if response.get('answerBox'):
+ answer_box = response.get('answerBox', {})
+ if answer_box.get('answer'):
+ raw_results.append(('', answer_box.get('answer'), ''))
+ elif answer_box.get('snippet'):
+ raw_results.append(
+ ('', answer_box.get('snippet').replace('\n', ' '), ''))
+ elif answer_box.get('snippetHighlighted'):
+ raw_results.append(
+ ('', answer_box.get('snippetHighlighted'), ''))
+
+ if response.get('knowledgeGraph'):
+ kg = response.get('knowledgeGraph', {})
+ description = kg.get('description', '')
+ attributes = '. '.join(
+ f'{attribute}: {value}'
+ for attribute, value in kg.get('attributes', {}).items())
+ raw_results.append(
+ (kg.get('descriptionLink', ''),
+ f'{description}. {attributes}' if attributes else description,
+ f"{kg.get('title', '')}: {kg.get('type', '')}."))
+
+ for result in response[self.result_key_for_type[
+ self.search_type]][:self.topk]:
+ description = result.get('snippet', '')
+ attributes = '. '.join(
+ f'{attribute}: {value}'
+ for attribute, value in result.get('attributes', {}).items())
+ raw_results.append(
+ (result.get('link', ''),
+ f'{description}. {attributes}' if attributes else description,
+ result.get('title', '')))
+
+ return self._filter_results(raw_results)
+
+
+class TencentSearch(BaseSearch):
+ """Wrapper around the tencentclound Search API.
+
+ To use, you should pass your secret_id and secret_key to the constructor.
+
+ Args:
+ secret_id (str): Your Tencent Cloud secret ID for accessing the API.
+ For more details, refer to the documentation: https://cloud.tencent.com/document/product/598/40488.
+ secret_key (str): Your Tencent Cloud secret key for accessing the API.
+ api_key (str, optional): Additional API key, if required.
+ action (str): The action for this interface, use `SearchCommon`.
+ version (str): The API version, use `2020-12-29`.
+ service (str): The service name, use `tms`.
+ host (str): The API host, use `tms.tencentcloudapi.com`.
+ topk (int): The maximum number of search results to return.
+ tsn (int): Time filter for search results. Valid values:
+ 1 (within 1 day), 2 (within 1 week), 3 (within 1 month),
+ 4 (within 1 year), 5 (within 6 months), 6 (within 3 years).
+ insite (str): Specify a site to search within (supports only a single site).
+ If not specified, the entire web is searched. Example: `zhihu.com`.
+ category (str): Vertical category for filtering results. Optional values include:
+ `baike` (encyclopedia), `weather`, `calendar`, `medical`, `news`, `train`, `star` (horoscope).
+ vrid (str): Result card type(s). Different `vrid` values represent different types of result cards.
+ Supports multiple values separated by commas. Example: `30010255`.
+ """
+
+ def __init__(self,
+ secret_id: str = 'Your SecretId',
+ secret_key: str = 'Your SecretKey',
+ api_key: str = '',
+ action: str = 'SearchCommon',
+ version: str = '2020-12-29',
+ service: str = 'tms',
+ host: str = 'tms.tencentcloudapi.com',
+ topk: int = 3,
+ tsn: int = None,
+ insite: str = None,
+ category: str = None,
+ vrid: str = None,
+ black_list: List[str] = [
+ 'enoN',
+ 'youtube.com',
+ 'bilibili.com',
+ 'researchgate.net',
+ ]):
+ self.secret_id = secret_id
+ self.secret_key = secret_key
+ self.api_key = api_key
+ self.action = action
+ self.version = version
+ self.service = service
+ self.host = host
+ self.tsn = tsn
+ self.insite = insite
+ self.category = category
+ self.vrid = vrid
+ super().__init__(topk, black_list=black_list)
+
+ @cached(cache=TTLCache(maxsize=100, ttl=600))
+ def search(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = self._call_tencent_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ time.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Bing Search after retries.')
+
+ @acached(cache=TTLCache(maxsize=100, ttl=600))
+ async def asearch(self, query: str, max_retry: int = 3) -> dict:
+ for attempt in range(max_retry):
+ try:
+ response = await self._async_call_tencent_api(query)
+ return self._parse_response(response)
+ except Exception as e:
+ logging.exception(str(e))
+ warnings.warn(
+ f'Retry {attempt + 1}/{max_retry} due to error: {e}')
+ await asyncio.sleep(random.randint(2, 5))
+ raise Exception(
+ 'Failed to get search results from Bing Search after retries.')
+
+ def _get_headers_and_payload(self, query: str) -> tuple:
+
+ def sign(key, msg):
+ return hmac.new(key, msg.encode('utf-8'), hashlib.sha256).digest()
+
+ params = dict(Query=query)
+ # if self.topk:
+ # params['Cnt'] = self.topk
+ if self.tsn:
+ params['Tsn'] = self.tsn
+ if self.insite:
+ params['Insite'] = self.insite
+ if self.category:
+ params['Category'] = self.category
+ if self.vrid:
+ params['Vrid'] = self.vrid
+ payload = json.dumps(params)
+ algorithm = 'TC3-HMAC-SHA256'
+ timestamp = int(time.time())
+ date = datetime.utcfromtimestamp(timestamp).strftime('%Y-%m-%d')
+
+ # ************* 步骤 1:拼接规范请求串 *************
+ http_request_method = 'POST'
+ canonical_uri = '/'
+ canonical_querystring = ''
+ ct = 'application/json; charset=utf-8'
+ canonical_headers = f'content-type:{ct}\nhost:{self.host}\nx-tc-action:{self.action.lower()}\n'
+ signed_headers = 'content-type;host;x-tc-action'
+ hashed_request_payload = hashlib.sha256(
+ payload.encode('utf-8')).hexdigest()
+ canonical_request = (
+ http_request_method + '\n' + canonical_uri + '\n' +
+ canonical_querystring + '\n' + canonical_headers + '\n' +
+ signed_headers + '\n' + hashed_request_payload)
+
+ # ************* 步骤 2:拼接待签名字符串 *************
+ credential_scope = date + '/' + self.service + '/' + 'tc3_request'
+ hashed_canonical_request = hashlib.sha256(
+ canonical_request.encode('utf-8')).hexdigest()
+ string_to_sign = (
+ algorithm + '\n' + str(timestamp) + '\n' + credential_scope +
+ '\n' + hashed_canonical_request)
+
+ # ************* 步骤 3:计算签名 *************
+ secret_date = sign(('TC3' + self.secret_key).encode('utf-8'), date)
+ secret_service = sign(secret_date, self.service)
+ secret_signing = sign(secret_service, 'tc3_request')
+ signature = hmac.new(secret_signing, string_to_sign.encode('utf-8'),
+ hashlib.sha256).hexdigest()
+
+ # ************* 步骤 4:拼接 Authorization *************
+ authorization = (
+ algorithm + ' ' + 'Credential=' + self.secret_id + '/' +
+ credential_scope + ', ' + 'SignedHeaders=' + signed_headers +
+ ', ' + 'Signature=' + signature)
+
+ # ************* 步骤 5:构造并发起请求 *************
+ headers = {
+ 'Authorization': authorization,
+ 'Content-Type': 'application/json; charset=utf-8',
+ 'Host': self.host,
+ 'X-TC-Action': self.action,
+ 'X-TC-Timestamp': str(timestamp),
+ 'X-TC-Version': self.version
+ }
+ # if self.region:
+ # headers["X-TC-Region"] = self.region
+ if self.api_key:
+ headers['X-TC-Token'] = self.api_key
+ return headers, payload
+
+ def _call_tencent_api(self, query: str) -> dict:
+ headers, payload = self._get_headers_and_payload(query)
+ req = HTTPSConnection(self.host)
+ req.request('POST', '/', headers=headers, body=payload.encode('utf-8'))
+ resp = req.getresponse()
+ try:
+ resp = json.loads(resp.read().decode('utf-8'))
+ except Exception as e:
+ logging.warning(str(e))
+ import ast
+ resp = ast.literal_eval(resp)
+ return resp.get('Response', dict())
+
+ async def _async_call_tencent_api(self, query: str):
+ headers, payload = self._get_headers_and_payload(query)
+ async with aiohttp.ClientSession(raise_for_status=True) as session:
+ async with session.post(
+ 'https://' + self.host.lstrip('/'),
+ headers=headers,
+ data=payload) as resp:
+ return (await resp.json()).get('Response', {})
+
+ def _parse_response(self, response: dict) -> dict:
+ raw_results = []
+ for item in response.get('Pages', []):
+ display = json.loads(item['Display'])
+ if not display['url']:
+ continue
+ raw_results.append((display['url'], display['content']
+ or display['abstract_info'], display['title']))
+ return self._filter_results(raw_results)
+
+
+class ContentFetcher:
+
+ def __init__(self, timeout: int = 5):
+ self.timeout = timeout
+
+ @cached(cache=TTLCache(maxsize=100, ttl=600))
+ def fetch(self, url: str) -> Tuple[bool, str]:
+ try:
+ response = requests.get(url, timeout=self.timeout)
+ response.raise_for_status()
+ html = response.content
+ except requests.RequestException as e:
+ return False, str(e)
+
+ text = BeautifulSoup(html, 'html.parser').get_text()
+ cleaned_text = re.sub(r'\n+', '\n', text)
+ return True, cleaned_text
+
+ @acached(cache=TTLCache(maxsize=100, ttl=600))
+ async def afetch(self, url: str) -> Tuple[bool, str]:
+ try:
+ async with aiohttp.ClientSession(
+ raise_for_status=True,
+ timeout=aiohttp.ClientTimeout(self.timeout)) as session:
+ async with session.get(url) as resp:
+ html = await resp.text(errors='ignore')
+ text = BeautifulSoup(html, 'html.parser').get_text()
+ cleaned_text = re.sub(r'\n+', '\n', text)
+ return True, cleaned_text
+ except Exception as e:
+ return False, str(e)
+
+
+class WebBrowser(BaseAction):
+ """Wrapper around the Web Browser Tool.
+ """
+
+ def __init__(self,
+ searcher_type: str = 'DuckDuckGoSearch',
+ timeout: int = 5,
+ black_list: Optional[List[str]] = [
+ 'enoN',
+ 'youtube.com',
+ 'bilibili.com',
+ 'researchgate.net',
+ ],
+ topk: int = 20,
+ description: Optional[dict] = None,
+ parser: Type[BaseParser] = JsonParser,
+ **kwargs):
+ self.searcher = eval(searcher_type)(
+ black_list=black_list, topk=topk, **kwargs)
+ self.fetcher = ContentFetcher(timeout=timeout)
+ self.search_results = None
+ super().__init__(description, parser)
+
+ @tool_api
+ def search(self, query: Union[str, List[str]]) -> dict:
+ """BING search API
+ Args:
+ query (List[str]): list of search query strings
+ """
+ queries = query if isinstance(query, list) else [query]
+ search_results = {}
+
+ with ThreadPoolExecutor() as executor:
+ future_to_query = {
+ executor.submit(self.searcher.search, q): q
+ for q in queries
+ }
+
+ for future in as_completed(future_to_query):
+ query = future_to_query[future]
+ try:
+ results = future.result()
+ except Exception as exc:
+ warnings.warn(f'{query} generated an exception: {exc}')
+ else:
+ for result in results.values():
+ if result['url'] not in search_results:
+ search_results[result['url']] = result
+ else:
+ search_results[
+ result['url']]['summ'] += f"\n{result['summ']}"
+
+ self.search_results = {
+ idx: result
+ for idx, result in enumerate(search_results.values())
+ }
+ return self.search_results
+
+ @tool_api
+ def select(self, select_ids: List[int]) -> dict:
+ """get the detailed content on the selected pages.
+
+ Args:
+ select_ids (List[int]): list of index to select. Max number of index to be selected is no more than 4.
+ """
+ if not self.search_results:
+ raise ValueError('No search results to select from.')
+
+ new_search_results = {}
+ with ThreadPoolExecutor() as executor:
+ future_to_id = {
+ executor.submit(self.fetcher.fetch, self.search_results[select_id]['url']): select_id
+ for select_id in select_ids if select_id in self.search_results
+ }
+ for future in as_completed(future_to_id):
+ select_id = future_to_id[future]
+ try:
+ web_success, web_content = future.result()
+ except Exception as exc:
+ warnings.warn(f'{select_id} generated an exception: {exc}')
+ else:
+ if web_success:
+ self.search_results[select_id][
+ 'content'] = web_content[:8192]
+ new_search_results[select_id] = self.search_results[
+ select_id].copy()
+ new_search_results[select_id].pop('summ')
+
+ return new_search_results
+
+ @tool_api
+ def open_url(self, url: str) -> dict:
+ print(f'Start Browsing: {url}')
+ web_success, web_content = self.fetcher.fetch(url)
+ if web_success:
+ return {'type': 'text', 'content': web_content}
+ else:
+ return {'error': web_content}
+
+
+class AsyncWebBrowser(AsyncActionMixin, WebBrowser):
+ """Wrapper around the Web Browser Tool.
+ """
+
+ @tool_api
+ async def search(self, query: Union[str, List[str]]) -> dict:
+ """BING search API
+
+ Args:
+ query (List[str]): list of search query strings
+ """
+ queries = query if isinstance(query, list) else [query]
+ search_results = {}
+
+ tasks = []
+ for q in queries:
+ task = asyncio.create_task(self.searcher.asearch(q))
+ task.query = q
+ tasks.append(task)
+ async for future in async_as_completed(tasks):
+ query = future.query
+ try:
+ results = await future
+ except Exception as exc:
+ warnings.warn(f'{query} generated an exception: {exc}')
+ else:
+ for result in results.values():
+ if result['url'] not in search_results:
+ search_results[result['url']] = result
+ else:
+ search_results[
+ result['url']]['summ'] += f"\n{result['summ']}"
+
+ self.search_results = {
+ idx: result
+ for idx, result in enumerate(search_results.values())
+ }
+ return self.search_results
+
+ @tool_api
+ async def select(self, select_ids: List[int]) -> dict:
+ """get the detailed content on the selected pages.
+
+ Args:
+ select_ids (List[int]): list of index to select. Max number of index to be selected is no more than 4.
+ """
+ if not self.search_results:
+ raise ValueError('No search results to select from.')
+
+ new_search_results = {}
+ tasks = []
+ for select_id in select_ids:
+ if select_id in self.search_results:
+ task = asyncio.create_task(
+ self.fetcher.afetch(self.search_results[select_id]['url']))
+ task.select_id = select_id
+ tasks.append(task)
+ async for future in async_as_completed(tasks):
+ select_id = future.select_id
+ try:
+ web_success, web_content = await future
+ except Exception as exc:
+ warnings.warn(f'{select_id} generated an exception: {exc}')
+ else:
+ if web_success:
+ self.search_results[select_id][
+ 'content'] = web_content[:8192]
+ new_search_results[select_id] = self.search_results[
+ select_id].copy()
+ new_search_results[select_id].pop('summ')
+ return new_search_results
+
+ @tool_api
+ async def open_url(self, url: str) -> dict:
+ print(f'Start Browsing: {url}')
+ web_success, web_content = await self.fetcher.afetch(url)
+ if web_success:
+ return {'type': 'text', 'content': web_content}
+ else:
+ return {'error': web_content}
diff --git a/lagent/agents/__init__.py b/lagent/agents/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f06972cc56e13012e8fe54a9fe8764748ae93f43
--- /dev/null
+++ b/lagent/agents/__init__.py
@@ -0,0 +1,9 @@
+from .agent import Agent, AgentDict, AgentList, AsyncAgent, AsyncSequential, Sequential
+from .react import AsyncReAct, ReAct
+from .stream import AgentForInternLM, AsyncAgentForInternLM, AsyncMathCoder, MathCoder
+
+__all__ = [
+ 'Agent', 'AgentDict', 'AgentList', 'AsyncAgent', 'AgentForInternLM',
+ 'AsyncAgentForInternLM', 'MathCoder', 'AsyncMathCoder', 'ReAct',
+ 'AsyncReAct', 'Sequential', 'AsyncSequential'
+]
diff --git a/lagent/agents/__pycache__/__init__.cpython-310.pyc b/lagent/agents/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5825951f4fcb0714b3130ec62372460c94012526
Binary files /dev/null and b/lagent/agents/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/agents/__pycache__/agent.cpython-310.pyc b/lagent/agents/__pycache__/agent.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d1351fd3487029daa7069396f1bc024f3403f748
Binary files /dev/null and b/lagent/agents/__pycache__/agent.cpython-310.pyc differ
diff --git a/lagent/agents/__pycache__/react.cpython-310.pyc b/lagent/agents/__pycache__/react.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2962782f3d180c6325761d4f7f91a0188f6a9714
Binary files /dev/null and b/lagent/agents/__pycache__/react.cpython-310.pyc differ
diff --git a/lagent/agents/__pycache__/stream.cpython-310.pyc b/lagent/agents/__pycache__/stream.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0ba2ad2cc74a37fbf4a247bc356e878a500f4435
Binary files /dev/null and b/lagent/agents/__pycache__/stream.cpython-310.pyc differ
diff --git a/lagent/agents/agent.py b/lagent/agents/agent.py
new file mode 100644
index 0000000000000000000000000000000000000000..b1e941baa442a52deb37755f64002724316bcf08
--- /dev/null
+++ b/lagent/agents/agent.py
@@ -0,0 +1,400 @@
+import copy
+import warnings
+from collections import OrderedDict, UserDict, UserList, abc
+from functools import wraps
+from itertools import chain, repeat
+from typing import Any, Callable, Dict, Iterable, List, Mapping, Optional, Union
+
+from lagent.agents.aggregator import DefaultAggregator
+from lagent.hooks import Hook, RemovableHandle
+from lagent.llms import BaseLLM
+from lagent.memory import Memory, MemoryManager
+from lagent.prompts.parsers import StrParser
+from lagent.prompts.prompt_template import PromptTemplate
+from lagent.schema import AgentMessage
+from lagent.utils import create_object
+
+
+class Agent:
+ """Agent is the basic unit of the system. It is responsible for
+ communicating with the LLM, managing the memory, and handling the
+ message aggregation and parsing. It can also be extended with hooks
+
+ Args:
+ llm (Union[BaseLLM, Dict]): The language model used by the agent.
+ template (Union[PromptTemplate, str]): The template used to format the
+ messages.
+ memory (Dict): The memory used by the agent.
+ output_format (Dict): The output format used by the agent.
+ aggregator (Dict): The aggregator used by the agent.
+ name (Optional[str]): The name of the agent.
+ description (Optional[str]): The description of the agent.
+ hooks (Optional[Union[List[Dict], Dict]]): The hooks used by the agent.
+
+ Returns:
+ AgentMessage: The response message.
+ """
+
+ def __init__(
+ self,
+ llm: Union[BaseLLM, Dict] = None,
+ template: Union[PromptTemplate, str, dict, List[dict]] = None,
+ memory: Dict = dict(type=Memory),
+ output_format: Optional[Dict] = None,
+ aggregator: Dict = dict(type=DefaultAggregator),
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ hooks: Optional[Union[List[Dict], Dict]] = None,
+ ):
+ self.name = name or self.__class__.__name__
+ self.llm: BaseLLM = create_object(llm)
+ self.memory: MemoryManager = MemoryManager(memory) if memory else None
+ self.output_format: StrParser = create_object(output_format)
+ self.template = template
+ self.description = description
+ self.aggregator: DefaultAggregator = create_object(aggregator)
+ self._hooks: Dict[int, Hook] = OrderedDict()
+ if hooks:
+ for hook in hooks:
+ hook = create_object(hook)
+ self.register_hook(hook)
+
+ def update_memory(self, message, session_id=0):
+ if self.memory:
+ self.memory.add(message, session_id=session_id)
+
+ def __call__(
+ self,
+ *message: Union[str, AgentMessage, List[AgentMessage]],
+ session_id=0,
+ **kwargs,
+ ) -> AgentMessage:
+ # message.receiver = self.name
+ message = [
+ AgentMessage(sender='user', content=m)
+ if isinstance(m, str) else copy.deepcopy(m) for m in message
+ ]
+ for hook in self._hooks.values():
+ result = hook.before_agent(self, message, session_id)
+ if result:
+ message = result
+ self.update_memory(message, session_id=session_id)
+ response_message = self.forward(
+ *message, session_id=session_id, **kwargs)
+ if not isinstance(response_message, AgentMessage):
+ response_message = AgentMessage(
+ sender=self.name,
+ content=response_message,
+ )
+ self.update_memory(response_message, session_id=session_id)
+ response_message = copy.deepcopy(response_message)
+ for hook in self._hooks.values():
+ result = hook.after_agent(self, response_message, session_id)
+ if result:
+ response_message = result
+ return response_message
+
+ def forward(self,
+ *message: AgentMessage,
+ session_id=0,
+ **kwargs) -> Union[AgentMessage, str]:
+ formatted_messages = self.aggregator.aggregate(
+ self.memory.get(session_id),
+ self.name,
+ self.output_format,
+ self.template,
+ )
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
+ if self.output_format:
+ formatted_messages = self.output_format.parse_response(
+ llm_response)
+ return AgentMessage(
+ sender=self.name,
+ content=llm_response,
+ formatted=formatted_messages,
+ )
+ return llm_response
+
+ def __setattr__(self, __name: str, __value: Any) -> None:
+ if isinstance(__value, Agent):
+ _agents = getattr(self, '_agents', OrderedDict())
+ _agents[__name] = __value
+ super().__setattr__('_agents', _agents)
+ super().__setattr__(__name, __value)
+
+ def state_dict(self, session_id=0):
+ state_dict, stack = {}, [('', self)]
+ while stack:
+ prefix, node = stack.pop()
+ key = prefix + 'memory'
+ if node.memory is not None:
+ if session_id not in node.memory.memory_map:
+ warnings.warn(f'No session id {session_id} in {key}')
+ memory = node.memory.get(session_id)
+ state_dict[key] = memory and memory.save() or []
+ if hasattr(node, '_agents'):
+ for name, value in reversed(node._agents.items()):
+ stack.append((prefix + name + '.', value))
+ return state_dict
+
+ def load_state_dict(self, state_dict: Dict, session_id=0):
+ _state_dict = self.state_dict()
+ missing_keys = set(_state_dict) - set(state_dict)
+ if missing_keys:
+ raise KeyError(f'Missing keys: {missing_keys}')
+ extra_keys = set(state_dict) - set(_state_dict)
+ if extra_keys:
+ warnings.warn(f'Mismatch keys which are not used: {extra_keys}')
+ for key in _state_dict:
+ obj = self
+ for attr in key.split('.')[:-1]:
+ if isinstance(obj, AgentList):
+ assert attr.isdigit()
+ obj = obj[int(attr)]
+ elif isinstance(obj, AgentDict):
+ obj = obj[attr]
+ else:
+ obj = getattr(obj, attr)
+ if obj.memory is not None:
+ if session_id not in obj.memory.memory_map:
+ obj.memory.create_instance(session_id)
+ obj.memory.memory_map[session_id].load(state_dict[key] or [])
+
+ def register_hook(self, hook: Callable):
+ handle = RemovableHandle(self._hooks)
+ self._hooks[handle.id] = hook
+ return handle
+
+ def reset(self,
+ session_id=0,
+ keypath: Optional[str] = None,
+ recursive: bool = False):
+ assert not (keypath and
+ recursive), 'keypath and recursive can\'t be used together'
+ if keypath:
+ keys, agent = keypath.split('.'), self
+ for key in keys:
+ agents = getattr(agent, '_agents', {})
+ if key not in agents:
+ raise KeyError(f'No sub-agent named {key} in {agent}')
+ agent = agents[key]
+ agent.reset(session_id, recursive=False)
+ else:
+ if self.memory:
+ self.memory.reset(session_id=session_id)
+ if recursive:
+ for agent in getattr(self, '_agents', {}).values():
+ agent.reset(session_id, recursive=True)
+
+ def __repr__(self):
+
+ def _rcsv_repr(agent, n_indent=1):
+ res = agent.__class__.__name__ + (f"(name='{agent.name}')"
+ if agent.name else '')
+ modules = [
+ f"{n_indent * ' '}({name}): {_rcsv_repr(agent, n_indent + 1)}"
+ for name, agent in getattr(agent, '_agents', {}).items()
+ ]
+ if modules:
+ res += '(\n' + '\n'.join(
+ modules) + f'\n{(n_indent - 1) * " "})'
+ elif not res.endswith(')'):
+ res += '()'
+ return res
+
+ return _rcsv_repr(self)
+
+
+class AsyncAgent(Agent):
+
+ async def __call__(self,
+ *message: AgentMessage | List[AgentMessage],
+ session_id=0,
+ **kwargs) -> AgentMessage:
+ message = [
+ AgentMessage(sender='user', content=m)
+ if isinstance(m, str) else copy.deepcopy(m) for m in message
+ ]
+ for hook in self._hooks.values():
+ result = hook.before_agent(self, message, session_id)
+ if result:
+ message = result
+ self.update_memory(message, session_id=session_id)
+ response_message = await self.forward(
+ *message, session_id=session_id, **kwargs)
+ if not isinstance(response_message, AgentMessage):
+ response_message = AgentMessage(
+ sender=self.name,
+ content=response_message,
+ )
+ self.update_memory(response_message, session_id=session_id)
+ response_message = copy.deepcopy(response_message)
+ for hook in self._hooks.values():
+ result = hook.after_agent(self, response_message, session_id)
+ if result:
+ response_message = result
+ return response_message
+
+ async def forward(self,
+ *message: AgentMessage,
+ session_id=0,
+ **kwargs) -> Union[AgentMessage, str]:
+ formatted_messages = self.aggregator.aggregate(
+ self.memory.get(session_id),
+ self.name,
+ self.output_format,
+ self.template,
+ )
+ llm_response = await self.llm.chat(formatted_messages, session_id,
+ **kwargs)
+ if self.output_format:
+ formatted_messages = self.output_format.parse_response(
+ llm_response)
+ return AgentMessage(
+ sender=self.name,
+ content=llm_response,
+ formatted=formatted_messages,
+ )
+ return llm_response
+
+
+class Sequential(Agent):
+ """Sequential is an agent container that forwards messages to each agent
+ in the order they are added."""
+
+ def __init__(self, *agents: Union[Agent, AsyncAgent, Iterable], **kwargs):
+ super().__init__(**kwargs)
+ self._agents = OrderedDict()
+ if not agents:
+ raise ValueError('At least one agent should be provided')
+ if isinstance(agents[0],
+ Iterable) and not isinstance(agents[0], Agent):
+ if not agents[0]:
+ raise ValueError('At least one agent should be provided')
+ agents = agents[0]
+ for key, agent in enumerate(agents):
+ if isinstance(agents, Mapping):
+ key, agent = agent, agents[agent]
+ elif isinstance(agent, tuple):
+ key, agent = agent
+ self.add_agent(key, agent)
+
+ def add_agent(self, name: str, agent: Union[Agent, AsyncAgent]):
+ assert isinstance(
+ agent, (Agent, AsyncAgent
+ )), f'{type(agent)} is not an Agent or AsyncAgent subclass'
+ self._agents[str(name)] = agent
+
+ def forward(self,
+ *message: AgentMessage,
+ session_id=0,
+ exit_at: Optional[int] = None,
+ **kwargs) -> AgentMessage:
+ assert exit_at is None or exit_at >= 0, 'exit_at should be greater than or equal to 0'
+ if exit_at is None:
+ exit_at = len(self) - 1
+ iterator = chain.from_iterable(repeat(self._agents.values()))
+ for _ in range(exit_at + 1):
+ agent = next(iterator)
+ if isinstance(message, AgentMessage):
+ message = (message, )
+ message = agent(*message, session_id=session_id, **kwargs)
+ return message
+
+ def __getitem__(self, key):
+ if isinstance(key, int) and key < 0:
+ assert key >= -len(self), 'index out of range'
+ key = len(self) + key
+ return self._agents[str(key)]
+
+ def __len__(self):
+ return len(self._agents)
+
+
+class AsyncSequential(Sequential, AsyncAgent):
+
+ async def forward(self,
+ *message: AgentMessage,
+ session_id=0,
+ exit_at: Optional[int] = None,
+ **kwargs) -> AgentMessage:
+ assert exit_at is None or exit_at >= 0, 'exit_at should be greater than or equal to 0'
+ if exit_at is None:
+ exit_at = len(self) - 1
+ iterator = chain.from_iterable(repeat(self._agents.values()))
+ for _ in range(exit_at + 1):
+ agent = next(iterator)
+ if isinstance(message, AgentMessage):
+ message = (message, )
+ message = await agent(*message, session_id=session_id, **kwargs)
+ return message
+
+
+class AgentContainerMixin:
+
+ def __init_subclass__(cls):
+ super().__init_subclass__()
+
+ def wrap_api(func):
+
+ @wraps(func)
+ def wrapped_func(self, *args, **kwargs):
+ data = self.data.copy() if hasattr(self, 'data') else None
+
+ def _backup(d):
+ if d is None:
+ self.data.clear()
+ else:
+ self.data = d
+
+ ret = func(self, *args, **kwargs)
+ agents = OrderedDict()
+ for k, item in (self.data.items() if isinstance(
+ self.data, abc.Mapping) else enumerate(self.data)):
+ if isinstance(self.data,
+ abc.Mapping) and not isinstance(k, str):
+ _backup(data)
+ raise KeyError(
+ f'agent name should be a string, got {type(k)}')
+ if isinstance(k, str) and '.' in k:
+ _backup(data)
+ raise KeyError(
+ f'agent name can\'t contain ".", got {k}')
+ if not isinstance(item, (Agent, AsyncAgent)):
+ _backup(data)
+ raise TypeError(
+ f'{type(item)} is not an Agent or AsyncAgent subclass'
+ )
+ agents[str(k)] = item
+ self._agents = agents
+ return ret
+
+ return wrapped_func
+
+ for method in [
+ 'append', 'sort', 'reverse', 'pop', 'clear', 'update',
+ 'insert', 'extend', 'remove', '__init__', '__setitem__',
+ '__delitem__', '__add__', '__iadd__', '__radd__', '__mul__',
+ '__imul__', '__rmul__'
+ ]:
+ if hasattr(cls, method):
+ setattr(cls, method, wrap_api(getattr(cls, method)))
+
+
+class AgentList(Agent, UserList, AgentContainerMixin):
+
+ def __init__(self,
+ agents: Optional[Iterable[Union[Agent, AsyncAgent]]] = None):
+ Agent.__init__(self, memory=None)
+ UserList.__init__(self, agents)
+ self.name = None
+
+
+class AgentDict(Agent, UserDict, AgentContainerMixin):
+
+ def __init__(self,
+ agents: Optional[Mapping[str, Union[Agent,
+ AsyncAgent]]] = None):
+ Agent.__init__(self, memory=None)
+ UserDict.__init__(self, agents)
+ self.name = None
diff --git a/lagent/agents/aggregator/__init__.py b/lagent/agents/aggregator/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5d9065ccf6f783f2cd85c427b9371e85e6699776
--- /dev/null
+++ b/lagent/agents/aggregator/__init__.py
@@ -0,0 +1,4 @@
+from .default_aggregator import DefaultAggregator
+from .tool_aggregator import InternLMToolAggregator
+
+__all__ = ['DefaultAggregator', 'InternLMToolAggregator']
diff --git a/lagent/agents/aggregator/__pycache__/__init__.cpython-310.pyc b/lagent/agents/aggregator/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..78de8e9f74e6865d8060853198368687692a7885
Binary files /dev/null and b/lagent/agents/aggregator/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/agents/aggregator/__pycache__/default_aggregator.cpython-310.pyc b/lagent/agents/aggregator/__pycache__/default_aggregator.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2697497bae6c320d7c113a6173bfc44efe2c15dc
Binary files /dev/null and b/lagent/agents/aggregator/__pycache__/default_aggregator.cpython-310.pyc differ
diff --git a/lagent/agents/aggregator/__pycache__/tool_aggregator.cpython-310.pyc b/lagent/agents/aggregator/__pycache__/tool_aggregator.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4fa85fca8862dafdd53eadaca164cfe7d12719ec
Binary files /dev/null and b/lagent/agents/aggregator/__pycache__/tool_aggregator.cpython-310.pyc differ
diff --git a/lagent/agents/aggregator/default_aggregator.py b/lagent/agents/aggregator/default_aggregator.py
new file mode 100644
index 0000000000000000000000000000000000000000..0888aef54b79e4d28753dd5bc1186f412964408e
--- /dev/null
+++ b/lagent/agents/aggregator/default_aggregator.py
@@ -0,0 +1,44 @@
+from typing import Dict, List
+
+from lagent.memory import Memory
+from lagent.prompts import StrParser
+
+
+class DefaultAggregator:
+
+ def aggregate(self,
+ messages: Memory,
+ name: str,
+ parser: StrParser = None,
+ system_instruction: str = None) -> List[Dict[str, str]]:
+ _message = []
+ messages = messages.get_memory()
+ if system_instruction:
+ _message.extend(
+ self.aggregate_system_intruction(system_instruction))
+ for message in messages:
+ if message.sender == name:
+ _message.append(
+ dict(role='assistant', content=str(message.content)))
+ else:
+ user_message = message.content
+ if len(_message) > 0 and _message[-1]['role'] == 'user':
+ _message[-1]['content'] += user_message
+ else:
+ _message.append(dict(role='user', content=user_message))
+ return _message
+
+ @staticmethod
+ def aggregate_system_intruction(system_intruction) -> List[dict]:
+ if isinstance(system_intruction, str):
+ system_intruction = dict(role='system', content=system_intruction)
+ if isinstance(system_intruction, dict):
+ system_intruction = [system_intruction]
+ if isinstance(system_intruction, list):
+ for msg in system_intruction:
+ if not isinstance(msg, dict):
+ raise TypeError(f'Unsupported message type: {type(msg)}')
+ if not ('role' in msg and 'content' in msg):
+ raise KeyError(
+ f"Missing required key 'role' or 'content': {msg}")
+ return system_intruction
diff --git a/lagent/agents/aggregator/tool_aggregator.py b/lagent/agents/aggregator/tool_aggregator.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ea473794b897690d67019aabfab24c89a209105
--- /dev/null
+++ b/lagent/agents/aggregator/tool_aggregator.py
@@ -0,0 +1,106 @@
+from typing import Dict, List, Optional, Union
+
+from lagent.agents.aggregator.default_aggregator import DefaultAggregator
+from lagent.memory.base_memory import Memory
+from lagent.prompts.parsers.tool_parser import MixedToolParser, ToolParser, ToolStatusCode
+
+
+class InternLMToolAggregator(DefaultAggregator):
+
+ def __init__(self,
+ environment_role='environment',
+ environment_begin='',
+ environment_end='',
+ user_names: Optional[List[str]] = None,
+ few_shot: Optional[List[List[dict]]] = None):
+ self.environment_role = environment_role
+ self.environment_begin = environment_begin
+ self.environment_end = environment_end
+ self.user_names = user_names or ['user']
+ self.few_shot = few_shot or []
+
+ def aggregate(self,
+ messages: Memory,
+ name: str,
+ parser: Union[ToolParser, MixedToolParser],
+ system_instruction: str = None) -> List[Dict[str, str]]:
+ _message = []
+ messages = messages.get_memory()
+ if system_instruction:
+ _message.extend(
+ self.aggregate_system_intruction(system_instruction))
+ tool_instruction = parser.format_instruction()
+ if tool_instruction:
+ if isinstance(tool_instruction, str):
+ tool_instruction = dict(
+ role='system', content=tool_instruction)
+ if parser.tool_type:
+ tool_instruction['name'] = parser.tool_type
+ if isinstance(tool_instruction, dict):
+ tool_instruction = [tool_instruction]
+ _message.extend(tool_instruction)
+
+ for shot in self.few_shot:
+ i = 0
+ while i < len(shot):
+ msg = shot[i]
+ if msg['role'] in ['assistant', 'user', 'system']:
+ _message.append(msg)
+ elif msg['role'] == self.environment_role:
+ if not msg['content'].startswith(self.environment_begin):
+ msg['content'] = self.environment_begin + msg['content']
+ if not msg['content'].endswith(self.environment_end):
+ msg['content'] += self.environment_end
+ _message.append(msg)
+ elif msg['role'] in ['thought', 'language']:
+ if i < len(shot) - 1 and shot[i + 1]['role'] == 'tool':
+ _message.append(
+ dict(
+ role='assistant',
+ content=parser.format_response(
+ dict(
+ tool_type=shot[i + 1]['name'],
+ thought=msg['content'],
+ action=shot[i + 1]['content'],
+ status=None))))
+ i += 1
+ else:
+ _message.append(
+ dict(
+ role='assistant',
+ content=parser.format_response(
+ dict(
+ tool_type=None,
+ thought=msg['content'],
+ action=None,
+ status=None))))
+ else:
+ raise KeyError(f'Unkown role: {msg["role"]}')
+ i += 1
+
+ tool_type = None
+ for message in messages:
+ if message.sender == name:
+ if isinstance(message.formatted, dict):
+ parsed = message.formatted
+ if parsed['status'] == ToolStatusCode.PARSING_ERROR:
+ continue
+ _message.append(
+ dict(
+ role='assistant',
+ content=parser.format_response(parsed)))
+ tool_type = parsed['tool_type']
+ else:
+ _message.append(
+ dict(role='assistant', content=str(message.content)))
+ elif message.sender in self.user_names:
+ _message.append(dict(role='user', content=message.content))
+ else:
+ msg = dict(
+ role=self.environment_role,
+ content=self.environment_begin + str(message.content) +
+ self.environment_end)
+ if tool_type:
+ msg['name'] = tool_type
+ _message.append(msg)
+ return _message
diff --git a/lagent/agents/react.py b/lagent/agents/react.py
new file mode 100644
index 0000000000000000000000000000000000000000..41d2414d0f1d15066aba5f56cae9afd9c9140c7c
--- /dev/null
+++ b/lagent/agents/react.py
@@ -0,0 +1,161 @@
+import json
+from typing import Callable, Dict, List, Union
+
+from pydantic import BaseModel, Field
+
+from lagent.actions import ActionExecutor, AsyncActionExecutor, BaseAction
+from lagent.agents.agent import Agent, AsyncAgent
+from lagent.agents.aggregator import DefaultAggregator
+from lagent.hooks import ActionPreprocessor
+from lagent.llms import BaseLLM
+from lagent.memory import Memory
+from lagent.prompts.parsers.json_parser import JSONParser
+from lagent.prompts.prompt_template import PromptTemplate
+from lagent.schema import AgentMessage
+from lagent.utils import create_object
+
+select_action_template = """你是一个可以调用外部工具的助手,可以使用的工具包括:
+{action_info}
+{output_format}
+开始!"""
+
+output_format_template = """如果使用工具请遵循以下格式回复:
+{function_format}
+
+如果你已经知道了答案,或者你不需要工具,请遵循以下格式回复
+{finish_format}"""
+
+
+class ReAct(Agent):
+
+ def __init__(self,
+ llm: Union[BaseLLM, Dict],
+ actions: Union[BaseAction, List[BaseAction]],
+ template: Union[PromptTemplate, str] = None,
+ memory: Dict = dict(type=Memory),
+ output_format: Dict = dict(type=JSONParser),
+ aggregator: Dict = dict(type=DefaultAggregator),
+ hooks: List = [dict(type=ActionPreprocessor)],
+ finish_condition: Callable[[AgentMessage], bool] = lambda m:
+ 'conclusion' in m.content or 'conclusion' in m.formatted,
+ max_turn: int = 5,
+ **kwargs):
+ self.max_turn = max_turn
+ self.finish_condition = finish_condition
+ actions = dict(
+ type=ActionExecutor,
+ actions=actions,
+ hooks=hooks,
+ )
+ self.actions: ActionExecutor = create_object(actions)
+ select_agent = dict(
+ type=Agent,
+ llm=llm,
+ template=template.format(
+ action_info=json.dumps(self.actions.description()),
+ output_format=output_format.format_instruction()),
+ output_format=output_format,
+ memory=memory,
+ aggregator=aggregator,
+ hooks=hooks,
+ )
+ self.select_agent = create_object(select_agent)
+ super().__init__(**kwargs)
+
+ def forward(self, message: AgentMessage, **kwargs) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = self.select_agent(message)
+ if self.finish_condition(message):
+ return message
+ message = self.actions(message)
+ return message
+
+
+class AsyncReAct(AsyncAgent):
+
+ def __init__(self,
+ llm: Union[BaseLLM, Dict],
+ actions: Union[BaseAction, List[BaseAction]],
+ template: Union[PromptTemplate, str] = None,
+ memory: Dict = dict(type=Memory),
+ output_format: Dict = dict(type=JSONParser),
+ aggregator: Dict = dict(type=DefaultAggregator),
+ hooks: List = [dict(type=ActionPreprocessor)],
+ finish_condition: Callable[[AgentMessage], bool] = lambda m:
+ 'conclusion' in m.content or 'conclusion' in m.formatted,
+ max_turn: int = 5,
+ **kwargs):
+ self.max_turn = max_turn
+ self.finish_condition = finish_condition
+ actions = dict(
+ type=AsyncActionExecutor,
+ actions=actions,
+ hooks=hooks,
+ )
+ self.actions: AsyncActionExecutor = create_object(actions)
+ select_agent = dict(
+ type=AsyncAgent,
+ llm=llm,
+ template=template.format(
+ action_info=json.dumps(self.actions.description()),
+ output_format=output_format.format_instruction()),
+ output_format=output_format,
+ memory=memory,
+ aggregator=aggregator,
+ hooks=hooks,
+ )
+ self.select_agent = create_object(select_agent)
+ super().__init__(**kwargs)
+
+ async def forward(self, message: AgentMessage, **kwargs) -> AgentMessage:
+ for _ in range(self.max_turn):
+ message = await self.select_agent(message)
+ if self.finish_condition(message):
+ return message
+ message = await self.actions(message)
+ return message
+
+
+if __name__ == '__main__':
+ from lagent.llms import GPTAPI
+
+ class ActionCall(BaseModel):
+ name: str = Field(description='调用的函数名称')
+ parameters: Dict = Field(description='调用函数的参数')
+
+ class ActionFormat(BaseModel):
+ thought_process: str = Field(
+ description='描述当前所处的状态和已知信息。这有助于明确目前所掌握的信息和接下来的搜索方向。')
+ action: ActionCall = Field(description='当前步骤需要执行的操作,包括函数名称和参数。')
+
+ class FinishFormat(BaseModel):
+ thought_process: str = Field(
+ description='描述当前所处的状态和已知信息。这有助于明确目前所掌握的信息和接下来的搜索方向。')
+ conclusion: str = Field(description='总结当前的搜索结果,回答问题。')
+
+ prompt_template = PromptTemplate(select_action_template)
+ output_format = JSONParser(
+ output_format_template,
+ function_format=ActionFormat,
+ finish_format=FinishFormat)
+
+ llm = dict(
+ type=GPTAPI,
+ model_type='gpt-4o-2024-05-13',
+ key=None,
+ max_new_tokens=4096,
+ proxies=dict(),
+ retry=1000)
+
+ agent = ReAct(
+ llm=llm,
+ template=prompt_template,
+ output_format=output_format,
+ aggregator=dict(type='DefaultAggregator'),
+ actions=[dict(type='PythonInterpreter')],
+ )
+ response = agent(
+ AgentMessage(sender='user', content='用 Python 计算一下 3 ** 5'))
+ print(response)
+ response = agent(AgentMessage(sender='user', content=' 2 ** 5 呢'))
+ print(response)
diff --git a/lagent/agents/stream.py b/lagent/agents/stream.py
new file mode 100644
index 0000000000000000000000000000000000000000..512250ff02c7dd3f09dd844e999e343b597feab8
--- /dev/null
+++ b/lagent/agents/stream.py
@@ -0,0 +1,316 @@
+import json
+import warnings
+from copy import deepcopy
+from typing import Callable, Dict, List, Union
+
+from lagent.actions import ActionExecutor, AsyncActionExecutor, AsyncIPythonInterpreter, IPythonInteractive
+from lagent.agents.agent import Agent, AsyncAgent
+from lagent.agents.aggregator import InternLMToolAggregator
+from lagent.hooks import InternLMActionProcessor
+from lagent.llms import BaseLLM
+from lagent.memory import Memory
+from lagent.prompts.parsers import InterpreterParser, MixedToolParser, PluginParser, ToolStatusCode
+from lagent.schema import AgentMessage
+from lagent.utils import create_object
+
+API_PREFIX = (
+ "This is the subfunction for tool '{tool_name}', you can use this tool. "
+ 'The description of this function is: \n{description}')
+
+META_CN = ('当开启工具以及代码时,根据需求选择合适的工具进行调用')
+
+INTERPRETER_CN = ('你现在已经能够在一个有状态的 Jupyter 笔记本环境中运行 Python 代码。'
+ '当你向 python 发送含有 Python 代码的消息时,它将在该环境中执行。'
+ '这个工具适用于多种场景,如数据分析或处理(包括数据操作、统计分析、图表绘制),'
+ '复杂的计算问题(解决数学和物理难题),编程示例(理解编程概念或特性),'
+ '文本处理和分析(比如文本解析和自然语言处理),'
+ '机器学习和数据科学(用于展示模型训练和数据可视化),'
+ '以及文件操作和数据导入(处理CSV、JSON等格式的文件)。')
+
+PLUGIN_CN = ('你可以使用如下工具:'
+ '\n{prompt}\n'
+ '如果你已经获得足够信息,请直接给出答案. 避免不必要的工具调用! '
+ '同时注意你可以使用的工具,不要随意捏造!')
+
+
+def get_plugin_prompt(actions, api_desc_template=API_PREFIX):
+ plugin_descriptions = []
+ for action in actions if isinstance(actions, list) else [actions]:
+ action = create_object(action)
+ action_desc = deepcopy(action.description)
+ if action.is_toolkit:
+ for api in action_desc['api_list']:
+ api['name'] = f"{action.name}.{api['name']}"
+ api['description'] = api_desc_template.format(
+ tool_name=action.name, description=api['description'])
+ api['parameters'] = [
+ param for param in api['parameters']
+ if param['name'] in api['required']
+ ]
+ plugin_descriptions.append(api)
+ else:
+ action_desc['description'] = api_desc_template.format(
+ tool_name=action.name, description=action_desc['description'])
+ action_desc['parameters'] = [
+ param for param in action_desc['parameters']
+ if param['name'] in action_desc['required']
+ ]
+ plugin_descriptions.append(action_desc)
+ return json.dumps(plugin_descriptions, ensure_ascii=False, indent=4)
+
+
+class AgentForInternLM(Agent):
+
+ _INTERNAL_AGENT_CLS = Agent
+
+ def __init__(
+ self,
+ llm: Union[BaseLLM, Dict],
+ plugins: Union[dict, List[dict]] = None,
+ interpreter: dict = None,
+ template: Union[str, dict, List[dict]] = None,
+ memory: Dict = dict(type=Memory),
+ output_format: Dict = dict(
+ type=MixedToolParser,
+ template=META_CN,
+ parsers=[
+ dict(type=PluginParser, template=PLUGIN_CN),
+ dict(type=InterpreterParser, template=INTERPRETER_CN),
+ ]),
+ aggregator: Dict = dict(type=InternLMToolAggregator),
+ action_hooks: List = [dict(type=InternLMActionProcessor)],
+ finish_condition: Callable[
+ [AgentMessage],
+ bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
+ max_turn: int = 4,
+ **kwargs,
+ ):
+ agent = dict(
+ type=self._INTERNAL_AGENT_CLS,
+ llm=llm,
+ template=template,
+ output_format=output_format,
+ memory=memory,
+ aggregator=aggregator,
+ hooks=kwargs.pop('hooks', None),
+ )
+ self.agent = create_object(agent)
+ self.plugin_executor = plugins and ActionExecutor(
+ plugins, hooks=action_hooks)
+ self.interpreter_executor = interpreter and ActionExecutor(
+ interpreter, hooks=action_hooks)
+ if not (self.plugin_executor or self.interpreter_executor):
+ warnings.warn(
+ 'Neither plugin nor interpreter executor is initialized. '
+ 'An exception will be thrown when the agent call a tool.')
+ self.finish_condition = finish_condition
+ self.max_turn = max_turn
+ super().__init__(**kwargs)
+
+ def forward(self, message: AgentMessage, session_id=0, **kwargs):
+ if isinstance(message, str):
+ message = AgentMessage(sender='user', content=message)
+ for _ in range(self.max_turn):
+ message = self.agent(message, session_id=session_id, **kwargs)
+ assert isinstance(message.formatted, dict)
+ if self.finish_condition(message):
+ return message
+ if message.formatted['tool_type']:
+ tool_type = message.formatted["tool_type"]
+ executor = getattr(self, f'{tool_type}_executor', None)
+ if not executor:
+ raise RuntimeError(f'No available {tool_type} executor')
+ message = executor(message, session_id=session_id)
+ return message
+
+ def get_steps(self, session_id=0):
+ steps, tool_type = [], None
+ for msg in self.agent.memory.get_memory(session_id):
+ if msg.sender == self.agent.name:
+ steps.append(
+ dict(role='thought', content=msg.formatted['thought']))
+ if msg.formatted['tool_type']:
+ tool_type = msg.formatted['tool_type']
+ steps.append(
+ dict(
+ role='tool',
+ content=msg.formatted['action'],
+ name=tool_type))
+ elif msg.sender != 'user':
+ feedback = dict(role='environment', content=msg.content)
+ if tool_type:
+ feedback['name'] = tool_type
+ steps.append(feedback)
+ return steps
+
+
+class MathCoder(AgentForInternLM):
+
+ def __init__(
+ self,
+ llm: Union[BaseLLM, Dict],
+ interpreter: dict = dict(
+ type=IPythonInteractive, timeout=20, max_out_len=8192),
+ template: Union[str, dict, List[dict]] = None,
+ memory: Dict = dict(type=Memory),
+ output_format: Dict = dict(
+ type=InterpreterParser,
+ template=
+ ('Integrate step-by-step reasoning and Python code to solve math problems '
+ 'using the following guidelines:\n'
+ '- Analyze the question and write jupyter code to solve the problem;\n'
+ r"- Present the final result in LaTeX using a '\boxed{{}}' without any "
+ 'units. \n')),
+ aggregator: Dict = dict(type=InternLMToolAggregator),
+ action_hooks: List = [dict(type=InternLMActionProcessor)],
+ finish_condition: Callable[
+ [AgentMessage],
+ bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
+ max_turn: int = 6,
+ **kwargs,
+ ):
+ kwargs.pop('plugins', None)
+ super().__init__(
+ llm=llm,
+ interpreter=interpreter,
+ template=template,
+ memory=memory,
+ output_format=output_format,
+ aggregator=aggregator,
+ action_hooks=action_hooks,
+ finish_condition=finish_condition,
+ max_turn=max_turn,
+ **kwargs)
+
+
+class AsyncAgentForInternLM(AsyncAgent):
+
+ _INTERNAL_AGENT_CLS = AsyncAgent
+
+ def __init__(
+ self,
+ llm: Union[BaseLLM, Dict],
+ plugins: Union[dict, List[dict]] = None,
+ interpreter: dict = None,
+ template: Union[str, dict, List[dict]] = None,
+ memory: Dict = dict(type=Memory),
+ output_format: Dict = dict(
+ type=MixedToolParser,
+ template=META_CN,
+ parsers=[
+ dict(type=PluginParser, template=PLUGIN_CN),
+ dict(type=InterpreterParser, template=INTERPRETER_CN),
+ ]),
+ aggregator: Dict = dict(type=InternLMToolAggregator),
+ action_hooks: List = [dict(type=InternLMActionProcessor)],
+ finish_condition: Callable[
+ [AgentMessage],
+ bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
+ max_turn: int = 4,
+ **kwargs,
+ ):
+ agent = dict(
+ type=self._INTERNAL_AGENT_CLS,
+ llm=llm,
+ template=template,
+ output_format=output_format,
+ memory=memory,
+ aggregator=aggregator,
+ hooks=kwargs.pop('hooks', None),
+ )
+ self.agent = create_object(agent)
+ self.plugin_executor = plugins and AsyncActionExecutor(
+ plugins, hooks=action_hooks)
+ self.interpreter_executor = interpreter and AsyncActionExecutor(
+ interpreter, hooks=action_hooks)
+ if not (self.plugin_executor or self.interpreter_executor):
+ warnings.warn(
+ 'Neither plugin nor interpreter executor is initialized. '
+ 'An exception will be thrown when the agent call a tool.')
+ self.finish_condition = finish_condition
+ self.max_turn = max_turn
+ super().__init__(**kwargs)
+
+ async def forward(self, message: AgentMessage, session_id=0, **kwargs):
+ if isinstance(message, str):
+ message = AgentMessage(sender='user', content=message)
+ for _ in range(self.max_turn):
+ message = await self.agent(
+ message, session_id=session_id, **kwargs)
+ assert isinstance(message.formatted, dict)
+ if self.finish_condition(message):
+ return message
+ if message.formatted['tool_type']:
+ tool_type = message.formatted["tool_type"]
+ executor = getattr(self, f'{tool_type}_executor', None)
+ if not executor:
+ raise RuntimeError(f'No available {tool_type} executor')
+ message = await executor(message, session_id=session_id)
+ return message
+
+ def get_steps(self, session_id=0):
+ steps, tool_type = [], None
+ for msg in self.agent.memory.get_memory(session_id):
+ if msg.sender == self.agent.name:
+ steps.append(
+ dict(role='thought', content=msg.formatted['thought']))
+ if msg.formatted['tool_type']:
+ tool_type = msg.formatted['tool_type']
+ steps.append(
+ dict(
+ role='tool',
+ content=msg.formatted['action'],
+ name=tool_type))
+ elif msg.sender != 'user':
+ feedback = dict(role='environment', content=msg.content)
+ if tool_type:
+ feedback['name'] = tool_type
+ steps.append(feedback)
+ return steps
+
+
+class AsyncMathCoder(AsyncAgentForInternLM):
+
+ def __init__(
+ self,
+ llm: Union[BaseLLM, Dict],
+ interpreter: dict = dict(type=AsyncIPythonInterpreter),
+ template: Union[str, dict, List[dict]] = None,
+ memory: Dict = dict(type=Memory),
+ output_format: Dict = dict(
+ type=InterpreterParser,
+ template=
+ ('Integrate step-by-step reasoning and Python code to solve math problems '
+ 'using the following guidelines:\n'
+ '- Analyze the question and write jupyter code to solve the problem;\n'
+ r"- Present the final result in LaTeX using a '\boxed{{}}' without any "
+ 'units. \n')),
+ aggregator: Dict = dict(type=InternLMToolAggregator),
+ action_hooks: List = [dict(type=InternLMActionProcessor)],
+ finish_condition: Callable[
+ [AgentMessage],
+ bool] = lambda m: m.formatted['status'] == ToolStatusCode.NO_TOOL,
+ max_turn: int = 6,
+ **kwargs,
+ ):
+ kwargs.pop('plugins', None)
+ super().__init__(
+ llm=llm,
+ interpreter=interpreter,
+ template=template,
+ memory=memory,
+ output_format=output_format,
+ aggregator=aggregator,
+ action_hooks=action_hooks,
+ finish_condition=finish_condition,
+ max_turn=max_turn,
+ **kwargs)
+
+ async def forward(self, message: AgentMessage, session_id=0, **kwargs):
+ try:
+ return await super().forward(message, session_id, **kwargs)
+ finally:
+ interpreter = next(
+ iter(self.interpreter_executor.actions.values()))
+ if interpreter.name == 'AsyncIPythonInterpreter':
+ await interpreter.close_session(session_id)
diff --git a/lagent/distributed/__init__.py b/lagent/distributed/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..98ad5210225eaa60ff2e2f361950af365b487e47
--- /dev/null
+++ b/lagent/distributed/__init__.py
@@ -0,0 +1,8 @@
+from .http_serve import AgentAPIServer, AsyncHTTPAgentClient, AsyncHTTPAgentServer, HTTPAgentClient, HTTPAgentServer
+from .ray_serve import AgentRayActor, AsyncAgentRayActor
+
+__all__ = [
+ 'AsyncAgentRayActor', 'AgentRayActor', 'HTTPAgentServer',
+ 'HTTPAgentClient', 'AsyncHTTPAgentServer', 'AsyncHTTPAgentClient',
+ 'AgentAPIServer'
+]
diff --git a/lagent/distributed/http_serve/__init__.py b/lagent/distributed/http_serve/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7082f30d659d980cc60d096f14cb4573a69debf
--- /dev/null
+++ b/lagent/distributed/http_serve/__init__.py
@@ -0,0 +1,7 @@
+from .api_server import AsyncHTTPAgentClient, AsyncHTTPAgentServer, HTTPAgentClient, HTTPAgentServer
+from .app import AgentAPIServer
+
+__all__ = [
+ 'HTTPAgentServer', 'HTTPAgentClient', 'AsyncHTTPAgentClient',
+ 'AsyncHTTPAgentServer', 'AgentAPIServer'
+]
diff --git a/lagent/distributed/http_serve/api_server.py b/lagent/distributed/http_serve/api_server.py
new file mode 100644
index 0000000000000000000000000000000000000000..0cb6907ab4ce1bc3b73dbc74898b29cbd3f8c6f8
--- /dev/null
+++ b/lagent/distributed/http_serve/api_server.py
@@ -0,0 +1,123 @@
+import json
+import os
+import subprocess
+import sys
+import time
+
+import aiohttp
+import requests
+
+from lagent.schema import AgentMessage
+
+
+class HTTPAgentClient:
+
+ def __init__(self, host='127.0.0.1', port=8090, timeout=None):
+ self.host = host
+ self.port = port
+ self.timeout = timeout
+
+ @property
+ def is_alive(self):
+ try:
+ resp = requests.get(
+ f'http://{self.host}:{self.port}/health_check',
+ timeout=self.timeout)
+ return resp.status_code == 200
+ except:
+ return False
+
+ def __call__(self, *message, session_id: int = 0, **kwargs):
+ response = requests.post(
+ f'http://{self.host}:{self.port}/chat_completion',
+ json={
+ 'message': [
+ m if isinstance(m, str) else m.model_dump()
+ for m in message
+ ],
+ 'session_id': session_id,
+ **kwargs,
+ },
+ headers={'Content-Type': 'application/json'},
+ timeout=self.timeout)
+ resp = response.json()
+ if response.status_code != 200:
+ return resp
+ return AgentMessage.model_validate(resp)
+
+ def state_dict(self, session_id: int = 0):
+ resp = requests.get(
+ f'http://{self.host}:{self.port}/memory/{session_id}',
+ timeout=self.timeout)
+ return resp.json()
+
+
+class HTTPAgentServer(HTTPAgentClient):
+
+ def __init__(self, gpu_id, config, host='127.0.0.1', port=8090):
+ super().__init__(host, port)
+ self.gpu_id = gpu_id
+ self.config = config
+ self.start_server()
+
+ def start_server(self):
+ # set CUDA_VISIBLE_DEVICES in subprocess
+ env = os.environ.copy()
+ env['CUDA_VISIBLE_DEVICES'] = self.gpu_id
+ cmds = [
+ sys.executable, 'lagent/distributed/http_serve/app.py', '--host',
+ self.host, '--port',
+ str(self.port), '--config',
+ json.dumps(self.config)
+ ]
+ self.process = subprocess.Popen(
+ cmds,
+ env=env,
+ stdout=subprocess.PIPE,
+ stderr=subprocess.STDOUT,
+ text=True)
+
+ while True:
+ output = self.process.stdout.readline()
+ if not output: # 如果读到 EOF,跳出循环
+ break
+ sys.stdout.write(output) # 打印到标准输出
+ sys.stdout.flush()
+ if 'Uvicorn running on' in output: # 根据实际输出调整
+ break
+ time.sleep(0.1)
+
+ def shutdown(self):
+ self.process.terminate()
+ self.process.wait()
+
+
+class AsyncHTTPAgentMixin:
+
+ async def __call__(self, *message, session_id: int = 0, **kwargs):
+ async with aiohttp.ClientSession(
+ timeout=aiohttp.ClientTimeout(self.timeout)) as session:
+ async with session.post(
+ f'http://{self.host}:{self.port}/chat_completion',
+ json={
+ 'message': [
+ m if isinstance(m, str) else m.model_dump()
+ for m in message
+ ],
+ 'session_id': session_id,
+ **kwargs,
+ },
+ headers={'Content-Type': 'application/json'},
+ ) as response:
+ resp = await response.json()
+ if response.status != 200:
+ return resp
+ return AgentMessage.model_validate(resp)
+
+
+class AsyncHTTPAgentClient(AsyncHTTPAgentMixin, HTTPAgentClient):
+ pass
+
+
+class AsyncHTTPAgentServer(AsyncHTTPAgentMixin, HTTPAgentServer):
+ pass
diff --git a/lagent/distributed/http_serve/app.py b/lagent/distributed/http_serve/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..7d05660a8b7677c842e6107045b714407fa1c4f4
--- /dev/null
+++ b/lagent/distributed/http_serve/app.py
@@ -0,0 +1,96 @@
+import argparse
+import json
+import logging
+import time
+
+import uvicorn
+from fastapi import FastAPI, HTTPException
+from fastapi.middleware.cors import CORSMiddleware
+from fastapi.requests import Request
+
+from lagent.schema import AgentMessage
+from lagent.utils import load_class_from_string
+
+
+class AgentAPIServer:
+
+ def __init__(self,
+ config: dict,
+ host: str = '127.0.0.1',
+ port: int = 8090):
+ self.app = FastAPI(docs_url='/')
+ self.app.add_middleware(
+ CORSMiddleware,
+ allow_origins=['*'],
+ allow_credentials=True,
+ allow_methods=['*'],
+ allow_headers=['*'],
+ )
+ cls_name = config.pop('type')
+ python_path = config.pop('python_path', None)
+ cls_name = load_class_from_string(cls_name, python_path) if isinstance(
+ cls_name, str) else cls_name
+ self.agent = cls_name(**config)
+ self.setup_routes()
+ self.run(host, port)
+
+ def setup_routes(self):
+
+ def heartbeat():
+ return {'status': 'success', 'timestamp': time.time()}
+
+ async def process_message(request: Request):
+ try:
+ body = await request.json()
+ message = [
+ m if isinstance(m, str) else AgentMessage.model_validate(m)
+ for m in body.pop('message')
+ ]
+ result = await self.agent(*message, **body)
+ return result
+ except Exception as e:
+ logging.error(f'Error processing message: {str(e)}')
+ raise HTTPException(
+ status_code=500, detail='Internal Server Error')
+
+ def get_memory(session_id: int = 0):
+ try:
+ result = self.agent.state_dict(session_id)
+ return result
+ except KeyError:
+ raise HTTPException(
+ status_code=404, detail="Session ID not found")
+ except Exception as e:
+ logging.error(f'Error processing message: {str(e)}')
+ raise HTTPException(
+ status_code=500, detail='Internal Server Error')
+
+ self.app.add_api_route('/health_check', heartbeat, methods=['GET'])
+ self.app.add_api_route(
+ '/chat_completion', process_message, methods=['POST'])
+ self.app.add_api_route(
+ '/memory/{session_id}', get_memory, methods=['GET'])
+
+ def run(self, host='127.0.0.1', port=8090):
+ logging.info(f'Starting server at {host}:{port}')
+ uvicorn.run(self.app, host=host, port=port)
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='Async Agent API Server')
+ parser.add_argument('--host', type=str, default='127.0.0.1')
+ parser.add_argument('--port', type=int, default=8090)
+ parser.add_argument(
+ '--config',
+ type=json.loads,
+ required=True,
+ help='JSON configuration for the agent')
+ args = parser.parse_args()
+
+ return args
+
+
+if __name__ == '__main__':
+ logging.basicConfig(level=logging.INFO)
+ args = parse_args()
+ AgentAPIServer(args.config, host=args.host, port=args.port)
diff --git a/lagent/distributed/ray_serve/__init__.py b/lagent/distributed/ray_serve/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8739b2a1b4f20ce21e06e6aea90460b073f1a396
--- /dev/null
+++ b/lagent/distributed/ray_serve/__init__.py
@@ -0,0 +1,3 @@
+from .ray_warpper import AgentRayActor, AsyncAgentRayActor
+
+__all__ = ['AsyncAgentRayActor', 'AgentRayActor']
diff --git a/lagent/distributed/ray_serve/ray_warpper.py b/lagent/distributed/ray_serve/ray_warpper.py
new file mode 100644
index 0000000000000000000000000000000000000000..d401c9443ffc8f806060855fb4e6810fdc60954d
--- /dev/null
+++ b/lagent/distributed/ray_serve/ray_warpper.py
@@ -0,0 +1,48 @@
+import importlib
+import sys
+from typing import Dict
+
+import ray
+
+from lagent.schema import AgentMessage
+from lagent.utils import load_class_from_string
+
+
+class AsyncAgentRayActor:
+
+ def __init__(
+ self,
+ config: Dict,
+ num_gpus: int,
+ ):
+ cls_name = config.pop('type')
+ python_path = config.pop('python_path', None)
+ cls_name = load_class_from_string(cls_name, python_path) if isinstance(
+ cls_name, str) else cls_name
+ AsyncAgentActor = ray.remote(num_gpus=num_gpus)(cls_name)
+ self.agent_actor = AsyncAgentActor.remote(**config)
+
+ async def __call__(self, *message: AgentMessage, session_id=0, **kwargs):
+ response = await self.agent_actor.__call__.remote(
+ *message, session_id=session_id, **kwargs)
+ return response
+
+
+class AgentRayActor:
+
+ def __init__(
+ self,
+ config: Dict,
+ num_gpus: int,
+ ):
+ cls_name = config.pop('type')
+ python_path = config.pop('python_path', None)
+ cls_name = load_class_from_string(cls_name, python_path) if isinstance(
+ cls_name, str) else cls_name
+ AgentActor = ray.remote(num_gpus=num_gpus)(cls_name)
+ self.agent_actor = AgentActor.remote(**config)
+
+ def __call__(self, *message: AgentMessage, session_id=0, **kwargs):
+ response = self.agent_actor.__call__.remote(
+ *message, session_id=session_id, **kwargs)
+ return ray.get(response)
diff --git a/lagent/hooks/__init__.py b/lagent/hooks/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0e935281e0ec2127e00da58b77f621fdbc0dd94f
--- /dev/null
+++ b/lagent/hooks/__init__.py
@@ -0,0 +1,8 @@
+from .action_preprocessor import ActionPreprocessor, InternLMActionProcessor
+from .hook import Hook, RemovableHandle
+from .logger import MessageLogger
+
+__all__ = [
+ 'Hook', 'RemovableHandle', 'ActionPreprocessor', 'InternLMActionProcessor',
+ 'MessageLogger'
+]
diff --git a/lagent/hooks/__pycache__/__init__.cpython-310.pyc b/lagent/hooks/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..14b5b6ab470f75165a5b4d721727d8262562da14
Binary files /dev/null and b/lagent/hooks/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/hooks/__pycache__/action_preprocessor.cpython-310.pyc b/lagent/hooks/__pycache__/action_preprocessor.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..697fb646827afcb7df1a97f2bb3874c36e35a6d7
Binary files /dev/null and b/lagent/hooks/__pycache__/action_preprocessor.cpython-310.pyc differ
diff --git a/lagent/hooks/__pycache__/hook.cpython-310.pyc b/lagent/hooks/__pycache__/hook.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f6757990c3e2d62a6e6c448ac8a36008aa7ec738
Binary files /dev/null and b/lagent/hooks/__pycache__/hook.cpython-310.pyc differ
diff --git a/lagent/hooks/__pycache__/logger.cpython-310.pyc b/lagent/hooks/__pycache__/logger.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5b137ddf8d69f214a4032ee18d798a0f75592a10
Binary files /dev/null and b/lagent/hooks/__pycache__/logger.cpython-310.pyc differ
diff --git a/lagent/hooks/action_preprocessor.py b/lagent/hooks/action_preprocessor.py
new file mode 100644
index 0000000000000000000000000000000000000000..51083aa86d4241acc307817b77708299c32daf93
--- /dev/null
+++ b/lagent/hooks/action_preprocessor.py
@@ -0,0 +1,62 @@
+from copy import deepcopy
+
+from lagent.schema import ActionReturn, ActionStatusCode, FunctionCall
+from .hook import Hook
+
+
+class ActionPreprocessor(Hook):
+ """The ActionPreprocessor is a hook that preprocesses the action message
+ and postprocesses the action return message.
+
+ """
+
+ def before_action(self, executor, message, session_id):
+ assert isinstance(message.formatted, FunctionCall) or (
+ isinstance(message.formatted, dict) and 'name' in message.content
+ and 'parameters' in message.formatted) or (
+ 'action' in message.formatted
+ and 'parameters' in message.formatted['action']
+ and 'name' in message.formatted['action'])
+ if isinstance(message.formatted, dict):
+ name = message.formatted.get('name',
+ message.formatted['action']['name'])
+ parameters = message.formatted.get(
+ 'parameters', message.formatted['action']['parameters'])
+ else:
+ name = message.formatted.name
+ parameters = message.formatted.parameters
+ message.content = dict(name=name, parameters=parameters)
+ return message
+
+ def after_action(self, executor, message, session_id):
+ action_return = message.content
+ if isinstance(action_return, ActionReturn):
+ if action_return.state == ActionStatusCode.SUCCESS:
+ response = action_return.format_result()
+ else:
+ response = action_return.errmsg
+ else:
+ response = action_return
+ message.content = response
+ return message
+
+
+class InternLMActionProcessor(ActionPreprocessor):
+
+ def __init__(self, code_parameter: str = 'command'):
+ self.code_parameter = code_parameter
+
+ def before_action(self, executor, message, session_id):
+ message = deepcopy(message)
+ assert isinstance(message.formatted, dict) and set(
+ message.formatted).issuperset(
+ {'tool_type', 'thought', 'action', 'status'})
+ if isinstance(message.formatted['action'], str):
+ # encapsulate code interpreter arguments
+ action_name = next(iter(executor.actions))
+ parameters = {self.code_parameter: message.formatted['action']}
+ if action_name in ['AsyncIPythonInterpreter']:
+ parameters['session_id'] = session_id
+ message.formatted['action'] = dict(
+ name=action_name, parameters=parameters)
+ return super().before_action(executor, message, session_id)
diff --git a/lagent/hooks/hook.py b/lagent/hooks/hook.py
new file mode 100644
index 0000000000000000000000000000000000000000..c3b3e303dae379797e491fee4e227f3c274251db
--- /dev/null
+++ b/lagent/hooks/hook.py
@@ -0,0 +1,50 @@
+from itertools import count
+from typing import Tuple
+
+from lagent.schema import AgentMessage
+
+
+class Hook:
+
+ def before_agent(
+ self,
+ agent,
+ message: Tuple[AgentMessage],
+ session_id: int,
+ ):
+ pass
+
+ def after_agent(
+ self,
+ agent,
+ message: AgentMessage,
+ session_id: int,
+ ):
+ pass
+
+ def before_action(
+ self,
+ executor,
+ message: AgentMessage,
+ session_id: int,
+ ):
+ pass
+
+ def after_action(
+ self,
+ executor,
+ message: AgentMessage,
+ session_id: int,
+ ):
+ pass
+
+
+class RemovableHandle:
+ _id_iter = count(0)
+
+ def __init__(self, hooks_dict):
+ self.hooks_dict = hooks_dict
+ self.id = next(self._id_iter)
+
+ def remove(self):
+ del self.hooks_dict[self.id]
diff --git a/lagent/hooks/logger.py b/lagent/hooks/logger.py
new file mode 100644
index 0000000000000000000000000000000000000000..50224e432a6ca1177f2f39ff760fd5855fcf43d9
--- /dev/null
+++ b/lagent/hooks/logger.py
@@ -0,0 +1,37 @@
+import random
+from typing import Optional
+
+from termcolor import COLORS, colored
+
+from lagent.utils import get_logger
+from .hook import Hook
+
+
+class MessageLogger(Hook):
+
+ def __init__(self, name: str = 'lagent'):
+ self.logger = get_logger(
+ name, 'info', '%(asctime)s %(levelname)8s %(name)8s - %(message)s')
+ self.sender2color = {}
+
+ def before_agent(self, agent, messages, session_id):
+ for message in messages:
+ self._process_message(message, session_id)
+
+ def after_agent(self, agent, message, session_id):
+ self._process_message(message, session_id)
+
+ def before_action(self, executor, message, session_id):
+ self._process_message(message, session_id)
+
+ def after_action(self, executor, message, session_id):
+ self._process_message(message, session_id)
+
+ def _process_message(self, message, session_id):
+ sender = message.sender
+ color = self.sender2color.setdefault(sender,
+ random.choice(list(COLORS)))
+ self.logger.info(
+ colored(
+ f'session id: {session_id}, message sender: {sender}\n'
+ f'{message.content}', color))
diff --git a/lagent/llms/__init__.py b/lagent/llms/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..fcbbd07d4622b1bf53a9b0daebb6a1c35a6a1711
--- /dev/null
+++ b/lagent/llms/__init__.py
@@ -0,0 +1,32 @@
+from .base_api import AsyncBaseAPILLM, BaseAPILLM
+from .base_llm import AsyncBaseLLM, BaseLLM
+from .huggingface import HFTransformer, HFTransformerCasualLM, HFTransformerChat
+from .lmdeploy_wrapper import (AsyncLMDeployClient, AsyncLMDeployPipeline,
+ AsyncLMDeployServer, LMDeployClient,
+ LMDeployPipeline, LMDeployServer)
+from .meta_template import INTERNLM2_META
+from .openai import GPTAPI, AsyncGPTAPI
+from .sensenova import SensenovaAPI
+from .vllm_wrapper import AsyncVllmModel, VllmModel
+
+__all__ = [
+ 'AsyncBaseLLM',
+ 'BaseLLM',
+ 'AsyncBaseAPILLM',
+ 'BaseAPILLM',
+ 'AsyncGPTAPI',
+ 'GPTAPI',
+ 'LMDeployClient',
+ 'AsyncLMDeployClient',
+ 'LMDeployPipeline',
+ 'AsyncLMDeployPipeline',
+ 'LMDeployServer',
+ 'AsyncLMDeployServer',
+ 'HFTransformer',
+ 'HFTransformerCasualLM',
+ 'INTERNLM2_META',
+ 'HFTransformerChat',
+ 'VllmModel',
+ 'AsyncVllmModel',
+ 'SensenovaAPI',
+]
diff --git a/lagent/llms/__pycache__/__init__.cpython-310.pyc b/lagent/llms/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0a46f7ccb85e6eeefb56618aa0fe0b6b7b41efa9
Binary files /dev/null and b/lagent/llms/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/base_api.cpython-310.pyc b/lagent/llms/__pycache__/base_api.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..241b55df139f7922d24a9f34faa2557aee546b74
Binary files /dev/null and b/lagent/llms/__pycache__/base_api.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/base_llm.cpython-310.pyc b/lagent/llms/__pycache__/base_llm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7c43c1e3227e1070df366e05a3d131105856a470
Binary files /dev/null and b/lagent/llms/__pycache__/base_llm.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/huggingface.cpython-310.pyc b/lagent/llms/__pycache__/huggingface.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..589c8b406998f3e6aefa0378bb43ccbc05222857
Binary files /dev/null and b/lagent/llms/__pycache__/huggingface.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/lmdeploy_wrapper.cpython-310.pyc b/lagent/llms/__pycache__/lmdeploy_wrapper.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4364923259420a4db30cd4b66a872533a4e07b32
Binary files /dev/null and b/lagent/llms/__pycache__/lmdeploy_wrapper.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/meta_template.cpython-310.pyc b/lagent/llms/__pycache__/meta_template.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..418734cab1eace364764e6435b0dd6e43146927b
Binary files /dev/null and b/lagent/llms/__pycache__/meta_template.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/openai.cpython-310.pyc b/lagent/llms/__pycache__/openai.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3f862d8ba5d82b4bc17f630678353800905b958
Binary files /dev/null and b/lagent/llms/__pycache__/openai.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/sensenova.cpython-310.pyc b/lagent/llms/__pycache__/sensenova.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bc5f54515f4497096830e58fe7aaa35924066323
Binary files /dev/null and b/lagent/llms/__pycache__/sensenova.cpython-310.pyc differ
diff --git a/lagent/llms/__pycache__/vllm_wrapper.cpython-310.pyc b/lagent/llms/__pycache__/vllm_wrapper.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f6ca317d12f91bd77e0659de141a17aaeb325258
Binary files /dev/null and b/lagent/llms/__pycache__/vllm_wrapper.cpython-310.pyc differ
diff --git a/lagent/llms/base_api.py b/lagent/llms/base_api.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0c2205dcd2c99f96ed97d5caf26fba6644bf59a
--- /dev/null
+++ b/lagent/llms/base_api.py
@@ -0,0 +1,175 @@
+import warnings
+from typing import Dict, List, Optional, Tuple, Union
+
+from lagent.llms.base_llm import AsyncLLMMixin, BaseLLM
+
+
+class APITemplateParser:
+ """Intermidate prompt template parser, specifically for API models.
+
+ Args:
+ meta_template (Dict): The meta template for the model.
+ """
+
+ def __init__(self, meta_template: Optional[Dict] = None):
+ self.meta_template = meta_template
+ # Check meta template
+ if meta_template:
+ assert isinstance(meta_template, list)
+ self.roles: Dict[str, dict] = dict() # maps role name to config
+ for item in meta_template:
+ assert isinstance(item, dict)
+ assert item['role'] not in self.roles, \
+ 'role in meta prompt must be unique!'
+ self.roles[item['role']] = item.copy()
+
+ def __call__(self, dialog: List[Union[str, List]]):
+ """Parse the intermidate prompt template, and wrap it with meta
+ template if applicable. When the meta template is set and the input is
+ a list, the return value will be a list containing the full
+ conversation history. Each item looks like:
+
+ .. code-block:: python
+
+ {'role': 'user', 'content': '...'}).
+
+ Args:
+ dialog (List[str or list]): An intermidate prompt
+ template (potentially before being wrapped by meta template).
+
+ Returns:
+ List[str or list]: The finalized prompt or a conversation.
+ """
+ assert isinstance(dialog, (str, list))
+ if isinstance(dialog, str):
+ return dialog
+ if self.meta_template:
+
+ prompt = list()
+ # Whether to keep generating the prompt
+ generate = True
+ for i, item in enumerate(dialog):
+ if not generate:
+ break
+ if isinstance(item, str):
+ if item.strip():
+ # TODO: logger
+ warnings.warn('Non-empty string in prompt template '
+ 'will be ignored in API models.')
+ else:
+ api_prompts = self._prompt2api(item)
+ prompt.append(api_prompts)
+
+ # merge the consecutive prompts assigned to the same role
+ new_prompt = list([prompt[0]])
+ last_role = prompt[0]['role']
+ for item in prompt[1:]:
+ if item['role'] == last_role:
+ new_prompt[-1]['content'] += '\n' + item['content']
+ else:
+ last_role = item['role']
+ new_prompt.append(item)
+ prompt = new_prompt
+
+ else:
+ # in case the model does not have any meta template
+ prompt = ''
+ last_sep = ''
+ for item in dialog:
+ if isinstance(item, str):
+ if item:
+ prompt += last_sep + item
+ elif item.get('content', ''):
+ prompt += last_sep + item.get('content', '')
+ last_sep = '\n'
+ return prompt
+
+ def _prompt2api(self, prompts: Union[List, str]) -> Tuple[str, bool]:
+ """Convert the prompts to a API-style prompts, given an updated
+ role_dict.
+
+ Args:
+ prompts (Union[List, str]): The prompts to be converted.
+ role_dict (Dict[str, Dict]): The updated role dict.
+ for_gen (bool): If True, the prompts will be converted for
+ generation tasks. The conversion stops before the first
+ role whose "generate" is set to True.
+
+ Returns:
+ Tuple[str, bool]: The converted string, and whether the follow-up
+ conversion should be proceeded.
+ """
+ if isinstance(prompts, str):
+ return prompts
+ elif isinstance(prompts, dict):
+ api_role = self._role2api_role(prompts)
+ return api_role
+
+ res = []
+ for prompt in prompts:
+ if isinstance(prompt, str):
+ raise TypeError('Mixing str without explicit role is not '
+ 'allowed in API models!')
+ else:
+ api_role = self._role2api_role(prompt)
+ res.append(api_role)
+ return res
+
+ def _role2api_role(self, role_prompt: Dict) -> Tuple[str, bool]:
+ merged_prompt = self.roles[role_prompt['role']]
+ if merged_prompt.get('fallback_role'):
+ merged_prompt = self.roles[self.roles[
+ merged_prompt['fallback_role']]]
+ res = role_prompt.copy()
+ res['role'] = merged_prompt['api_role']
+ res['content'] = merged_prompt.get('begin', '')
+ res['content'] += role_prompt.get('content', '')
+ res['content'] += merged_prompt.get('end', '')
+ return res
+
+
+class BaseAPILLM(BaseLLM):
+ """Base class for API model wrapper.
+
+ Args:
+ model_type (str): The type of model.
+ retry (int): Number of retires if the API call fails. Defaults to 2.
+ meta_template (Dict, optional): The model's meta prompt
+ template if needed, in case the requirement of injecting or
+ wrapping of any meta instructions.
+ """
+
+ is_api: bool = True
+
+ def __init__(self,
+ model_type: str,
+ retry: int = 2,
+ template_parser: 'APITemplateParser' = APITemplateParser,
+ meta_template: Optional[Dict] = None,
+ *,
+ max_new_tokens: int = 512,
+ top_p: float = 0.8,
+ top_k: int = 40,
+ temperature: float = 0.8,
+ repetition_penalty: float = 0.0,
+ stop_words: Union[List[str], str] = None):
+ self.model_type = model_type
+ self.meta_template = meta_template
+ self.retry = retry
+ if template_parser:
+ self.template_parser = template_parser(meta_template)
+
+ if isinstance(stop_words, str):
+ stop_words = [stop_words]
+ self.gen_params = dict(
+ max_new_tokens=max_new_tokens,
+ top_p=top_p,
+ top_k=top_k,
+ temperature=temperature,
+ repetition_penalty=repetition_penalty,
+ stop_words=stop_words,
+ skip_special_tokens=False)
+
+
+class AsyncBaseAPILLM(AsyncLLMMixin, BaseAPILLM):
+ pass
diff --git a/lagent/llms/base_llm.py b/lagent/llms/base_llm.py
new file mode 100644
index 0000000000000000000000000000000000000000..62bb5d6296d5d304362614d438617aa4658b5cba
--- /dev/null
+++ b/lagent/llms/base_llm.py
@@ -0,0 +1,305 @@
+from copy import copy
+from typing import Dict, List, Optional, Tuple, Union
+
+
+class LMTemplateParser:
+ """Intermidate prompt template parser, specifically for language models.
+
+ Args:
+ meta_template (list of dict, optional): The meta template for the
+ model.
+ """
+
+ def __init__(self, meta_template: Optional[List[Dict]] = None):
+ self.meta_template = meta_template
+ if meta_template:
+ assert isinstance(meta_template, list)
+ self.roles: Dict[str, dict] = dict() # maps role name to config
+ for item in meta_template:
+ assert isinstance(item, dict)
+ assert item['role'] not in self.roles, \
+ 'role in meta prompt must be unique!'
+ self.roles[item['role']] = item.copy()
+
+ def __call__(self, dialog) -> str:
+ """Parse a prompt template, and wrap it with meta template if
+ applicable.
+
+ Args:
+ dialog (List[str or PromptList]): A prompt
+ template (potentially before being wrapped by meta template).
+
+ Returns:
+ str: The final string.
+ """
+ assert isinstance(dialog, (str, list))
+ if isinstance(dialog, str):
+ return dialog
+ if self.meta_template:
+
+ prompt = ''
+ for index, item in enumerate(dialog):
+ if isinstance(item, str):
+ prompt += item
+ else:
+ new_str = self._prompt2str(item, index == len(dialog) - 1)
+ prompt += new_str
+ else:
+ # in case the model does not have any meta template
+ prompt = ''
+ last_sep = ''
+ for item in dialog:
+ if isinstance(item, str):
+ if item:
+ prompt += last_sep + item
+ elif item.get('content', ''):
+ prompt += last_sep + item.get('prompt', '')
+ last_sep = '\n'
+ return prompt
+
+ def _format_begin(self, role_cfg, message):
+ name = message.get('name', None)
+ if name is not None:
+ begin = role_cfg['begin'].get('with_name', '')
+ if name in role_cfg['begin'].get('name', {}):
+ begin = begin.format(name=role_cfg['begin']['name'][name])
+ else:
+ begin = begin.format(name=name)
+ else:
+ if isinstance(role_cfg.get('begin', ''), str):
+ begin = role_cfg.get('begin', '')
+ elif isinstance(role_cfg['begin'], dict):
+ begin = role_cfg['begin'].get('without_name', '')
+ return begin
+
+ def _prompt2str(self,
+ prompt: Union[str, Dict],
+ last: bool = False) -> Tuple[str, bool]:
+ if isinstance(prompt, str):
+ return prompt
+ merged_prompt = self.roles.get(prompt['role'])
+
+ if merged_prompt.get('fallback_role'):
+ merged_prompt = self.roles.get(merged_prompt['fallback_role'])
+ begin = self._format_begin(merged_prompt, prompt)
+ res = begin
+ if last and merged_prompt.get('generate', False):
+ res += prompt.get('content', '')
+ return res
+ res += prompt.get('content', '') + merged_prompt.get('end', '')
+ if last and merged_prompt['role'] != 'assistant':
+ res += self._format_begin(self.roles['assistant'], {})
+ return res
+ return res
+
+
+class BaseLLM:
+ """Base class for model wrapper.
+
+ Args:
+ path (str): The path to the model.
+ max_new_tokens (int): Maximum length of output expected to be generated by the model. Defaults
+ to 512.
+ tokenizer_only (bool): If True, only the tokenizer will be initialized.
+ Defaults to False.
+ meta_template (list of dict, optional): The model's meta prompt
+ template if needed, in case the requirement of injecting or
+ wrapping of any meta instructions.
+ """
+
+ def __init__(self,
+ path: str,
+ tokenizer_only: bool = False,
+ template_parser: 'LMTemplateParser' = LMTemplateParser,
+ meta_template: Optional[List[Dict]] = None,
+ *,
+ max_new_tokens: int = 512,
+ top_p: float = 0.8,
+ top_k: float = 40,
+ temperature: float = 0.8,
+ repetition_penalty: float = 1.0,
+ stop_words: Union[List[str], str] = None):
+ self.path = path
+ self.tokenizer_only = tokenizer_only
+ # meta template
+ self.template_parser = template_parser(meta_template)
+ self.eos_token_id = None
+ if meta_template and 'eos_token_id' in meta_template:
+ self.eos_token_id = meta_template['eos_token_id']
+
+ if isinstance(stop_words, str):
+ stop_words = [stop_words]
+ self.gen_params = dict(
+ max_new_tokens=max_new_tokens,
+ top_p=top_p,
+ top_k=top_k,
+ temperature=temperature,
+ repetition_penalty=repetition_penalty,
+ stop_words=stop_words)
+
+ def generate(self, inputs: Union[str, List[str]], **gen_params) -> str:
+ """Generate results given a str (or list of) inputs.
+
+ Args:
+ inputs (Union[str, List[str]]):
+ gen_params (dict): The input params for generation.
+
+ Returns:
+ Union[str, List[str]]: A (list of) generated strings.
+
+ eg.
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+ response = ['']
+ if batched:
+ return response
+ return response[0]
+ """
+ raise NotImplementedError
+
+ def stream_generate(self, inputs: str, **gen_params) -> List[str]:
+ """Generate results as streaming given a str inputs.
+
+ Args:
+ inputs (str):
+ gen_params (dict): The input params for generation.
+
+ Returns:
+ str: A generated string.
+ """
+ raise NotImplementedError
+
+ def chat(self,
+ inputs: Union[List[dict], List[List[dict]]],
+ session_ids: Union[int, List[int]] = None,
+ **gen_params):
+ """Generate completion from a list of templates.
+
+ Args:
+ inputs (Union[List[dict], List[List[dict]]]):
+ gen_params (dict): The input params for generation.
+ Returns:
+ """
+ if isinstance(inputs[0], list):
+ _inputs = list()
+ for msg in inputs:
+ _inputs.append(self.template_parser(msg))
+ else:
+ _inputs = self.template_parser(inputs)
+ return self.generate(_inputs, **gen_params)
+
+ def stream_chat(self, inputs: List[dict], **gen_params):
+ """Generate results as streaming given a list of templates.
+
+ Args:
+ inputs (Union[List[dict]):
+ gen_params (dict): The input params for generation.
+ Returns:
+ """
+ raise NotImplementedError
+
+ def tokenize(self, prompts: Union[str, List[str], List[dict],
+ List[List[dict]]]):
+ """Tokenize the input prompts.
+
+ Args:
+ prompts(str | List[str]): user's prompt, or a batch prompts
+
+ Returns:
+ Tuple(numpy.ndarray, numpy.ndarray, numpy.ndarray): prompt's token
+ ids, ids' length and requested output length
+ """
+ raise NotImplementedError
+
+ def update_gen_params(self, **kwargs):
+ gen_params = copy(self.gen_params)
+ gen_params.update(kwargs)
+ return gen_params
+
+
+class AsyncLLMMixin:
+
+ async def generate(self,
+ inputs: Union[str, List[str]],
+ session_ids: Union[int, List[int]] = None,
+ **gen_params) -> str:
+ """Generate results given a str (or list of) inputs.
+
+ Args:
+ inputs (Union[str, List[str]]):
+ gen_params (dict): The input params for generation.
+
+ Returns:
+ Union[str, List[str]]: A (list of) generated strings.
+
+ eg.
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+ response = ['']
+ if batched:
+ return response
+ return response[0]
+ """
+ raise NotImplementedError
+
+ async def stream_generate(self, inputs: str, **gen_params) -> List[str]:
+ """Generate results as streaming given a str inputs.
+
+ Args:
+ inputs (str):
+ gen_params (dict): The input params for generation.
+
+ Returns:
+ str: A generated string.
+ """
+ raise NotImplementedError
+
+ async def chat(self,
+ inputs: Union[List[dict], List[List[dict]]],
+ session_ids: Union[int, List[int]] = None,
+ **gen_params):
+ """Generate completion from a list of templates.
+
+ Args:
+ inputs (Union[List[dict], List[List[dict]]]):
+ gen_params (dict): The input params for generation.
+ Returns:
+ """
+ if isinstance(inputs[0], list):
+ _inputs = list()
+ for msg in inputs:
+ _inputs.append(self.template_parser(msg))
+ else:
+ _inputs = self.template_parser(inputs)
+ return await self.generate(_inputs, session_ids, **gen_params)
+
+ async def stream_chat(self, inputs: List[dict], **gen_params):
+ """Generate results as streaming given a list of templates.
+
+ Args:
+ inputs (Union[List[dict]):
+ gen_params (dict): The input params for generation.
+ Returns:
+ """
+ raise NotImplementedError
+
+ async def tokenize(self, prompts: Union[str, List[str], List[dict],
+ List[List[dict]]]):
+ """Tokenize the input prompts.
+
+ Args:
+ prompts(str | List[str]): user's prompt, or a batch prompts
+
+ Returns:
+ Tuple(numpy.ndarray, numpy.ndarray, numpy.ndarray): prompt's token
+ ids, ids' length and requested output length
+ """
+ raise NotImplementedError
+
+
+class AsyncBaseLLM(AsyncLLMMixin, BaseLLM):
+ pass
diff --git a/lagent/llms/huggingface.py b/lagent/llms/huggingface.py
new file mode 100644
index 0000000000000000000000000000000000000000..87c779a8f7a1b6b5a9ff78b201b2150c8e277e62
--- /dev/null
+++ b/lagent/llms/huggingface.py
@@ -0,0 +1,337 @@
+import copy
+import logging
+from typing import Dict, List, Optional, Union
+
+from lagent.schema import ModelStatusCode
+from .base_api import APITemplateParser
+from .base_llm import BaseLLM
+
+logger = logging.getLogger(__name__)
+
+
+class HFTransformer(BaseLLM):
+ """Model wrapper around HuggingFace general models.
+
+ Adapted from Internlm (https://github.com/InternLM/InternLM/blob/main/
+ chat/web_demo.py)
+
+ Args:
+ path (str): The name or path to HuggingFace's model.
+ tokenizer_path (str): The path to the tokenizer. Defaults to None.
+ tokenizer_kwargs (dict): Keyword arguments for the tokenizer.
+ Defaults to {}.
+ tokenizer_only (bool): If True, only the tokenizer will be initialized.
+ Defaults to False.
+ model_kwargs (dict): Keyword arguments for the model, used in loader.
+ Defaults to dict(device_map='auto').
+ meta_template (Dict, optional): The model's meta prompt
+ template if needed, in case the requirement of injecting or
+ wrapping of any meta instructions.
+ """
+
+ def __init__(self,
+ path: str,
+ tokenizer_path: Optional[str] = None,
+ tokenizer_kwargs: dict = dict(),
+ tokenizer_only: bool = False,
+ model_kwargs: dict = dict(device_map='auto'),
+ meta_template: Optional[Dict] = None,
+ stop_words_id: Union[List[int], int] = None,
+ **kwargs):
+ super().__init__(
+ path=path,
+ tokenizer_only=tokenizer_only,
+ meta_template=meta_template,
+ **kwargs)
+ if isinstance(stop_words_id, int):
+ stop_words_id = [stop_words_id]
+ self.gen_params.update(stop_words_id=stop_words_id)
+ if self.gen_params['stop_words'] is not None and \
+ self.gen_params['stop_words_id'] is not None:
+ logger.warning('Both stop_words and stop_words_id are specified,'
+ 'only stop_words_id will be used.')
+
+ self._load_tokenizer(
+ path=path,
+ tokenizer_path=tokenizer_path,
+ tokenizer_kwargs=tokenizer_kwargs)
+ if not tokenizer_only:
+ self._load_model(path=path, model_kwargs=model_kwargs)
+
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList # noqa: E501
+ self.logits_processor = LogitsProcessorList()
+ self.stopping_criteria = StoppingCriteriaList()
+ self.prefix_allowed_tokens_fn = None
+
+ stop_words_id = []
+ if self.gen_params.get('stop_words_id'):
+ stop_words_id = self.gen_params.get('stop_words_id')
+ elif self.gen_params.get('stop_words'):
+ for sw in self.gen_params.get('stop_words'):
+ stop_words_id.append(self.tokenizer(sw)['input_ids'][-1])
+ self.additional_eos_token_id = stop_words_id
+
+ def _load_tokenizer(self, path: str, tokenizer_path: Optional[str],
+ tokenizer_kwargs: dict):
+ from transformers import AutoTokenizer
+ self.tokenizer = AutoTokenizer.from_pretrained(
+ tokenizer_path if tokenizer_path else path,
+ trust_remote_code=True,
+ **tokenizer_kwargs)
+
+ if self.tokenizer.pad_token_id is None:
+ if self.tokenizer.eos_token is not None:
+ logger.warning(
+ f'Using eos_token_id {self.tokenizer.eos_token} '
+ 'as pad_token_id.')
+ self.tokenizer.pad_token = self.tokenizer.eos_token
+ else:
+ from transformers.generation import GenerationConfig
+ self.gcfg = GenerationConfig.from_pretrained(path)
+
+ if self.gcfg.pad_token_id is not None:
+ logger.warning(
+ f'Using pad_token_id {self.gcfg.pad_token_id} '
+ 'as pad_token_id.')
+ self.tokenizer.pad_token_id = self.gcfg.pad_token_id
+ else:
+ raise ValueError(
+ 'pad_token_id is not set for this tokenizer. Try to '
+ 'set pad_token_id via passing '
+ '`pad_token_id={PAD_TOKEN_ID}` in model_cfg.')
+
+ def _load_model(self, path: str, model_kwargs: dict):
+ import torch
+ from transformers import AutoModel
+ model_kwargs.setdefault('torch_dtype', torch.float16)
+ self.model = AutoModel.from_pretrained(
+ path, trust_remote_code=True, **model_kwargs)
+ self.model.eval()
+
+ def tokenize(self, inputs: str):
+ assert isinstance(inputs, str)
+ inputs = self.tokenizer(
+ inputs, return_tensors='pt', return_length=True)
+ return inputs['input_ids'].tolist()
+
+ def generate(
+ self,
+ inputs: Union[str, List[str]],
+ do_sample: bool = True,
+ **kwargs,
+ ):
+ """Return the chat completions in non-stream mode.
+
+ Args:
+ inputs (Union[str, List[str]]): input texts to be completed.
+ do_sample (bool): do sampling if enabled
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+ for status, chunk, _ in self.stream_generate(inputs, do_sample,
+ **kwargs):
+ response = chunk
+ return response
+
+ def stream_generate(
+ self,
+ inputs: List[str],
+ do_sample: bool = True,
+ **kwargs,
+ ):
+ """Return the chat completions in stream mode.
+
+ Args:
+ inputs (Union[str, List[str]]): input texts to be completed.
+ do_sample (bool): do sampling if enabled
+ Returns:
+ tuple(Status, str, int): status, text/chat completion,
+ generated token number
+ """
+ import torch
+ from torch import nn
+ with torch.no_grad():
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+ inputs = self.tokenizer(
+ inputs, padding=True, return_tensors='pt', return_length=True)
+ input_length = inputs['length']
+ for k, v in inputs.items():
+ inputs[k] = v.cuda()
+ input_ids = inputs['input_ids']
+ attention_mask = inputs['attention_mask']
+ batch_size = input_ids.shape[0]
+ input_ids_seq_length = input_ids.shape[-1]
+ generation_config = self.model.generation_config
+ generation_config = copy.deepcopy(generation_config)
+ new_gen_params = self.update_gen_params(**kwargs)
+ generation_config.update(**new_gen_params)
+ generation_config.update(**kwargs)
+ model_kwargs = generation_config.to_dict()
+ model_kwargs['attention_mask'] = attention_mask
+ _, eos_token_id = ( # noqa: F841 # pylint: disable=W0612
+ generation_config.bos_token_id,
+ generation_config.eos_token_id,
+ )
+ if eos_token_id is None:
+ if self.gcfg.eos_token_id is not None:
+ eos_token_id = self.gcfg.eos_token_id
+ else:
+ eos_token_id = []
+ if isinstance(eos_token_id, int):
+ eos_token_id = [eos_token_id]
+ if self.additional_eos_token_id is not None:
+ eos_token_id.extend(self.additional_eos_token_id)
+ eos_token_id_tensor = torch.tensor(eos_token_id).to(
+ input_ids.device) if eos_token_id is not None else None
+ generation_config.max_length = (
+ generation_config.max_new_tokens + input_ids_seq_length)
+ # Set generation parameters if not already defined
+ logits_processor = self.logits_processor
+ stopping_criteria = self.stopping_criteria
+
+ logits_processor = self.model._get_logits_processor(
+ generation_config=generation_config,
+ input_ids_seq_length=input_ids_seq_length,
+ encoder_input_ids=input_ids,
+ prefix_allowed_tokens_fn=self.prefix_allowed_tokens_fn,
+ logits_processor=logits_processor,
+ )
+
+ stopping_criteria = self.model._get_stopping_criteria(
+ generation_config=generation_config,
+ stopping_criteria=stopping_criteria)
+ logits_warper = self.model._get_logits_warper(generation_config)
+
+ unfinished_sequences = input_ids.new(batch_size).fill_(1)
+ scores = None
+ while True:
+ model_inputs = self.model.prepare_inputs_for_generation(
+ input_ids, **model_kwargs)
+ # forward pass to get next token
+ outputs = self.model(
+ **model_inputs,
+ return_dict=True,
+ output_attentions=False,
+ output_hidden_states=False,
+ )
+
+ next_token_logits = outputs.logits[:, -1, :]
+
+ # pre-process distribution
+ next_token_scores = logits_processor(input_ids,
+ next_token_logits)
+ next_token_scores = logits_warper(input_ids, next_token_scores)
+
+ # sample
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
+ if do_sample:
+ next_tokens = torch.multinomial(
+ probs, num_samples=1).squeeze(1)
+ else:
+ next_tokens = torch.argmax(probs, dim=-1)
+
+ # update generated ids, model inputs,
+ # and length for next step
+ input_ids = torch.cat([input_ids, next_tokens[:, None]],
+ dim=-1)
+ model_kwargs = self.model._update_model_kwargs_for_generation( # noqa: E501
+ outputs,
+ model_kwargs,
+ is_encoder_decoder=False)
+ unfinished_sequences = unfinished_sequences.mul(
+ next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(
+ eos_token_id_tensor.unsqueeze(1)).prod(dim=0))
+ output_token_ids = input_ids.cpu().tolist()
+ for i in range(len(output_token_ids)):
+ output_token_ids[i] = output_token_ids[i][:][
+ input_length[i]:]
+ # Find the first occurrence of
+ # an EOS token in the sequence
+ first_eos_idx = next(
+ (idx
+ for idx, token_id in enumerate(output_token_ids[i])
+ if token_id in eos_token_id), None)
+ # If an EOS token is found, only the previous
+ # part of it is retained
+ if first_eos_idx is not None:
+ output_token_ids[i] = output_token_ids[
+ i][:first_eos_idx]
+
+ response = self.tokenizer.batch_decode(output_token_ids)
+ # print(response)
+ if not batched:
+ response = response[0]
+ yield ModelStatusCode.STREAM_ING, response, None
+ # stop when each sentence is finished,
+ # or if we exceed the maximum length
+ if (unfinished_sequences.max() == 0
+ or stopping_criteria(input_ids, scores)):
+ break
+ yield ModelStatusCode.END, response, None
+
+ def stream_chat(
+ self,
+ inputs: List[dict],
+ do_sample: bool = True,
+ **kwargs,
+ ):
+ """Return the chat completions in stream mode.
+
+ Args:
+ inputs (List[dict]): input messages to be completed.
+ do_sample (bool): do sampling if enabled
+ Returns:
+ the text/chat completion
+ """
+ prompt = self.template_parser(inputs)
+ yield from self.stream_generate(prompt, do_sample, **kwargs)
+
+
+class HFTransformerCasualLM(HFTransformer):
+
+ def _load_model(self, path: str, model_kwargs: dict):
+ import torch
+ from transformers import AutoModelForCausalLM
+ model_kwargs.setdefault('torch_dtype', torch.float16)
+ self.model = AutoModelForCausalLM.from_pretrained(
+ path, trust_remote_code=True, **model_kwargs)
+ self.model.eval()
+
+
+class HFTransformerChat(HFTransformerCasualLM):
+
+ def __init__(self, template_parser=APITemplateParser, **kwargs):
+ super().__init__(template_parser=template_parser, **kwargs)
+
+ def chat(self,
+ inputs: Union[List[dict], List[List[dict]]],
+ do_sample: bool = True,
+ **kwargs):
+ """Return the chat completions in stream mode.
+
+ Args:
+ inputs (Union[List[dict], List[List[dict]]]): input messages to be completed.
+ do_sample (bool): do sampling if enabled
+ Returns:
+ the text/chat completion
+ """
+ # handle batch inference with vanilla for loop
+ if isinstance(inputs[0], list):
+ resps = []
+ for input in inputs:
+ resps.append(self.chat(input, do_sample, **kwargs))
+ return resps
+ prompt = self.template_parser(inputs)
+ query = prompt[-1]['content']
+ history = prompt[:-1]
+ try:
+ response, history = self.model.chat(
+ self.tokenizer, query, history=history)
+ except Exception as e:
+ # handle over-length input error
+ logger.warning(str(e))
+ response = ''
+ return response
diff --git a/lagent/llms/lmdeploy_wrapper.py b/lagent/llms/lmdeploy_wrapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..283d50e8de090878d9e15c1d78d60ee8818fdc8a
--- /dev/null
+++ b/lagent/llms/lmdeploy_wrapper.py
@@ -0,0 +1,790 @@
+import asyncio
+import copy
+import logging
+from dataclasses import asdict
+from typing import List, Optional, Union
+
+import aiohttp
+
+from lagent.llms.base_llm import AsyncLLMMixin, BaseLLM
+from lagent.schema import ModelStatusCode
+from lagent.utils.util import filter_suffix
+
+
+class TritonClient(BaseLLM):
+ """TritonClient is a wrapper of TritonClient for LLM.
+
+ Args:
+ tritonserver_addr (str): the address in format "ip:port" of
+ triton inference server
+ model_name (str): the name of the model
+ session_len (int): the context size
+ max_tokens (int): the expected generated token numbers
+ """
+
+ def __init__(self,
+ tritonserver_addr: str,
+ model_name: str,
+ session_len: int = 32768,
+ log_level: str = 'WARNING',
+ **kwargs):
+ super().__init__(path=None, **kwargs)
+ try:
+ from lmdeploy.serve.turbomind.chatbot import Chatbot, StatusCode
+ except Exception as e:
+ logging.error(f'{e}')
+ raise RuntimeError('DO NOT use turbomind.chatbot since it has '
+ 'been removed by lmdeploy since v0.5.2')
+ self.state_map = {
+ StatusCode.TRITON_STREAM_END: ModelStatusCode.END,
+ StatusCode.TRITON_SERVER_ERR: ModelStatusCode.SERVER_ERR,
+ StatusCode.TRITON_SESSION_CLOSED: ModelStatusCode.SESSION_CLOSED,
+ StatusCode.TRITON_STREAM_ING: ModelStatusCode.STREAM_ING,
+ StatusCode.TRITON_SESSION_OUT_OF_LIMIT:
+ ModelStatusCode.SESSION_OUT_OF_LIMIT,
+ StatusCode.TRITON_SESSION_INVALID_ARG:
+ ModelStatusCode.SESSION_INVALID_ARG,
+ StatusCode.TRITON_SESSION_READY: ModelStatusCode.SESSION_READY
+ }
+ self.chatbot = Chatbot(
+ tritonserver_addr=tritonserver_addr,
+ model_name=model_name,
+ session_len=session_len,
+ log_level=log_level,
+ **kwargs)
+
+ def generate(self,
+ inputs: Union[str, List[str]],
+ session_id: int = 2967,
+ request_id: str = '',
+ sequence_start: bool = True,
+ sequence_end: bool = True,
+ skip_special_tokens: bool = False,
+ **kwargs):
+ """Start a new round conversation of a session. Return the chat
+ completions in non-stream mode.
+
+ Args:
+ inputs (str, List[str]): user's prompt(s) in this round
+ session_id (int): the identical id of a session
+ request_id (str): the identical id of this round conversation
+ sequence_start (bool): start flag of a session
+ sequence_end (bool): end flag of a session
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+ from lmdeploy.serve.turbomind.chatbot import Session, get_logger
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ prompt = inputs
+
+ assert isinstance(session_id, int), \
+ f'INT session id is required, but got {type(session_id)}'
+
+ self.chatbot.cfg = self._update_gen_params(**kwargs)
+ max_new_tokens = self.chatbot.cfg.max_new_tokens
+
+ logger = get_logger('service.ft', log_level=self.chatbot.log_level)
+ logger.info(f'session {session_id}, request_id {request_id}, '
+ f'max_out_len {max_new_tokens}')
+
+ if self.chatbot._session is None:
+ sequence_start = True
+ self.chatbot._session = Session(session_id=session_id)
+ elif self.chatbot._session.status == 0:
+ logger.error(f'session {session_id} has been ended. Please set '
+ f'`sequence_start` be True if you want to restart it')
+ return ''
+
+ self.chatbot._session.status = 1
+ self.chatbot._session.request_id = request_id
+ self.chatbot._session.response = ''
+
+ status, res, _ = None, '', 0
+ for status, res, _ in self.chatbot._stream_infer(
+ self.chatbot._session,
+ prompt,
+ max_new_tokens,
+ sequence_start,
+ sequence_end,
+ skip_special_tokens=skip_special_tokens):
+ status = self.state_map.get(status)
+ if status < ModelStatusCode.END:
+ return ''
+ elif status == ModelStatusCode.END:
+ self.chatbot._session.histories = (
+ self.chatbot._session.histories +
+ self.chatbot._session.prompt +
+ self.chatbot._session.response)
+ # remove stop_words
+ res = filter_suffix(res, self.gen_params.get('stop_words'))
+ return res
+
+ def stream_chat(self,
+ inputs: List[dict],
+ session_id: int = 2967,
+ request_id: str = '',
+ sequence_start: bool = True,
+ sequence_end: bool = True,
+ skip_special_tokens: bool = False,
+ **kwargs):
+ """Start a new round conversation of a session. Return the chat
+ completions in stream mode.
+
+ Args:
+ session_id (int): the identical id of a session
+ inputs (List[dict]): user's inputs in this round conversation
+ request_id (str): the identical id of this round conversation
+ sequence_start (bool): start flag of a session
+ sequence_end (bool): end flag of a session
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ Returns:
+ tuple(Status, str, int): status, text/chat completion,
+ generated token number
+ """
+ from lmdeploy.serve.turbomind.chatbot import Session, get_logger
+ assert isinstance(session_id, int), \
+ f'INT session id is required, but got {type(session_id)}'
+
+ self.chatbot.cfg = self._update_gen_params(**kwargs)
+ max_new_tokens = self.chatbot.cfg.max_new_tokens
+
+ logger = get_logger('service.ft', log_level=self.chatbot.log_level)
+ logger.info(f'session {session_id}, request_id {request_id}, '
+ f'max_out_len {max_new_tokens}')
+
+ if self.chatbot._session is None:
+ sequence_start = True
+ self.chatbot._session = Session(session_id=session_id)
+ elif self.chatbot._session.status == 0:
+ logger.error(f'session {session_id} has been ended. Please set '
+ f'`sequence_start` be True if you want to restart it')
+ return ModelStatusCode.SESSION_CLOSED, '', 0
+
+ self.chatbot._session.status = 1
+ self.chatbot._session.request_id = request_id
+ self.chatbot._session.response = ''
+
+ prompt = self.template_parser(inputs)
+ status, res, _ = None, '', 0
+ for status, res, _ in self.chatbot._stream_infer(
+ self.chatbot._session,
+ prompt,
+ max_new_tokens,
+ sequence_start,
+ sequence_end,
+ skip_special_tokens=skip_special_tokens):
+ status = self.state_map.get(status)
+ # The stop symbol also appears in the output of the last STREAM_ING state.
+ res = filter_suffix(res, self.gen_params.get('stop_words'))
+ if status < ModelStatusCode.END:
+ return status, res, _
+ elif status == ModelStatusCode.END: # remove stop_words
+ self.chatbot._session.histories = (
+ self.chatbot._session.histories +
+ self.chatbot._session.prompt +
+ self.chatbot._session.response)
+ yield status, res, _
+ break
+ else:
+ yield status, res, _
+
+ def _update_gen_params(self, **kwargs):
+ import mmengine
+ new_gen_params = self.update_gen_params(**kwargs)
+ self.gen_params['stop_words'] = new_gen_params.pop('stop_words')
+ stop_words = self.chatbot._stop_words(
+ self.gen_params.get('stop_words'))
+ cfg = mmengine.Config(
+ dict(
+ session_len=self.chatbot.model.session_len,
+ stop_words=stop_words,
+ bad_words=self.chatbot.cfg.bad_words,
+ **new_gen_params))
+ return cfg
+
+
+class LMDeployPipeline(BaseLLM):
+ """
+
+ Args:
+ path (str): The path to the model.
+ It could be one of the following options:
+ - i) A local directory path of a turbomind model which is
+ converted by `lmdeploy convert` command or download
+ from ii) and iii).
+ - ii) The model_id of a lmdeploy-quantized model hosted
+ inside a model repo on huggingface.co, such as
+ "InternLM/internlm-chat-20b-4bit",
+ "lmdeploy/llama2-chat-70b-4bit", etc.
+ - iii) The model_id of a model hosted inside a model repo
+ on huggingface.co, such as "internlm/internlm-chat-7b",
+ "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
+ and so on.
+ model_name (str): needed when model_path is a pytorch model on
+ huggingface.co, such as "internlm-chat-7b",
+ "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
+ tp (int): tensor parallel
+ pipeline_cfg (dict): config of pipeline
+ """
+
+ def __init__(self,
+ path: str,
+ model_name: Optional[str] = None,
+ tp: int = 1,
+ pipeline_cfg=dict(),
+ **kwargs):
+ import lmdeploy
+ from lmdeploy import ChatTemplateConfig, TurbomindEngineConfig, pipeline, version_info
+
+ self.str_version = lmdeploy.__version__
+ self.version = version_info
+ self.do_sample = kwargs.pop('do_sample', None)
+ if self.do_sample is not None and self.version < (0, 6, 0):
+ raise RuntimeError(
+ '`do_sample` parameter is not supported by lmdeploy until '
+ f'v0.6.0, but currently using lmdeloy {self.str_version}')
+ super().__init__(path=path, **kwargs)
+ backend_config = copy.deepcopy(pipeline_cfg)
+ backend_config.update(tp=tp)
+ backend_config = {
+ k: v
+ for k, v in backend_config.items()
+ if hasattr(TurbomindEngineConfig, k)
+ }
+ backend_config = TurbomindEngineConfig(**backend_config)
+ chat_template_config = ChatTemplateConfig(
+ model_name=model_name) if model_name else None
+ self.model = pipeline(
+ model_path=self.path,
+ backend_config=backend_config,
+ chat_template_config=chat_template_config,
+ log_level='WARNING')
+
+ def generate(self,
+ inputs: Union[str, List[str]],
+ do_preprocess: bool = None,
+ skip_special_tokens: bool = False,
+ return_dict: bool = False,
+ **kwargs):
+ """Return the chat completions in non-stream mode.
+
+ Args:
+ inputs (Union[str, List[str]]): input texts to be completed.
+ do_preprocess (bool): whether pre-process the messages. Default to
+ True, which means chat_template will be applied.
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+ from lmdeploy.messages import GenerationConfig
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+ prompt = inputs
+ do_sample = kwargs.pop('do_sample', None)
+ gen_params = self.update_gen_params(**kwargs)
+
+ if do_sample is None:
+ do_sample = self.do_sample
+ if do_sample is not None and self.version < (0, 6, 0):
+ raise RuntimeError(
+ '`do_sample` parameter is not supported by lmdeploy until '
+ f'v0.6.0, but currently using lmdeloy {self.str_version}')
+ if self.version >= (0, 6, 0):
+ if do_sample is None:
+ do_sample = gen_params['top_k'] > 1 or gen_params[
+ 'temperature'] > 0
+ gen_params.update(do_sample=do_sample)
+
+ gen_config = GenerationConfig(
+ skip_special_tokens=skip_special_tokens, **gen_params)
+ response = self.model.batch_infer(
+ prompt, gen_config=gen_config, do_preprocess=do_preprocess)
+ texts = [resp.text for resp in response]
+ # remove stop_words
+ texts = filter_suffix(texts, self.gen_params.get('stop_words'))
+ for resp, text in zip(response, texts):
+ resp.text = text
+ if batched:
+ return [asdict(resp)
+ for resp in response] if return_dict else texts
+ return asdict(response[0]) if return_dict else texts[0]
+
+
+class LMDeployServer(BaseLLM):
+ """
+
+ Args:
+ path (str): The path to the model.
+ It could be one of the following options:
+ - i) A local directory path of a turbomind model which is
+ converted by `lmdeploy convert` command or download from
+ ii) and iii).
+ - ii) The model_id of a lmdeploy-quantized model hosted
+ inside a model repo on huggingface.co, such as
+ "InternLM/internlm-chat-20b-4bit",
+ "lmdeploy/llama2-chat-70b-4bit", etc.
+ - iii) The model_id of a model hosted inside a model repo
+ on huggingface.co, such as "internlm/internlm-chat-7b",
+ "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
+ and so on.
+ model_name (str): needed when model_path is a pytorch model on
+ huggingface.co, such as "internlm-chat-7b",
+ "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
+ server_name (str): host ip for serving
+ server_port (int): server port
+ tp (int): tensor parallel
+ log_level (str): set log level whose value among
+ [CRITICAL, ERROR, WARNING, INFO, DEBUG]
+ """
+
+ def __init__(self,
+ path: str,
+ model_name: Optional[str] = None,
+ server_name: str = '0.0.0.0',
+ server_port: int = 23333,
+ tp: int = 1,
+ log_level: str = 'WARNING',
+ serve_cfg=dict(),
+ **kwargs):
+ super().__init__(path=path, **kwargs)
+ self.model_name = model_name
+ # TODO get_logger issue in multi processing
+ import lmdeploy
+ self.client = lmdeploy.serve(
+ model_path=self.path,
+ model_name=model_name,
+ server_name=server_name,
+ server_port=server_port,
+ tp=tp,
+ log_level=log_level,
+ **serve_cfg)
+
+ def generate(self,
+ inputs: Union[str, List[str]],
+ session_id: int = 2967,
+ sequence_start: bool = True,
+ sequence_end: bool = True,
+ ignore_eos: bool = False,
+ skip_special_tokens: Optional[bool] = False,
+ timeout: int = 30,
+ **kwargs) -> List[str]:
+ """Start a new round conversation of a session. Return the chat
+ completions in non-stream mode.
+
+ Args:
+ inputs (str, List[str]): user's prompt(s) in this round
+ session_id (int): the identical id of a session
+ sequence_start (bool): start flag of a session
+ sequence_end (bool): end flag of a session
+ ignore_eos (bool): indicator for ignoring eos
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ timeout (int): max time to wait for response
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+
+ gen_params = self.update_gen_params(**kwargs)
+ max_new_tokens = gen_params.pop('max_new_tokens')
+ gen_params.update(max_tokens=max_new_tokens)
+
+ resp = [''] * len(inputs)
+ for text in self.client.completions_v1(
+ self.model_name,
+ inputs,
+ session_id=session_id,
+ sequence_start=sequence_start,
+ sequence_end=sequence_end,
+ stream=False,
+ ignore_eos=ignore_eos,
+ skip_special_tokens=skip_special_tokens,
+ timeout=timeout,
+ **gen_params):
+ resp = [
+ resp[i] + item['text']
+ for i, item in enumerate(text['choices'])
+ ]
+ # remove stop_words
+ resp = filter_suffix(resp, self.gen_params.get('stop_words'))
+ if not batched:
+ return resp[0]
+ return resp
+
+ def stream_chat(self,
+ inputs: List[dict],
+ session_id=0,
+ sequence_start: bool = True,
+ sequence_end: bool = True,
+ stream: bool = True,
+ ignore_eos: bool = False,
+ skip_special_tokens: Optional[bool] = False,
+ timeout: int = 30,
+ **kwargs):
+ """Start a new round conversation of a session. Return the chat
+ completions in stream mode.
+
+ Args:
+ session_id (int): the identical id of a session
+ inputs (List[dict]): user's inputs in this round conversation
+ sequence_start (bool): start flag of a session
+ sequence_end (bool): end flag of a session
+ stream (bool): return in a streaming format if enabled
+ ignore_eos (bool): indicator for ignoring eos
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ timeout (int): max time to wait for response
+ Returns:
+ tuple(Status, str, int): status, text/chat completion,
+ generated token number
+ """
+ gen_params = self.update_gen_params(**kwargs)
+ max_new_tokens = gen_params.pop('max_new_tokens')
+ gen_params.update(max_tokens=max_new_tokens)
+ prompt = self.template_parser(inputs)
+
+ resp = ''
+ finished = False
+ stop_words = self.gen_params.get('stop_words')
+ for text in self.client.completions_v1(
+ self.model_name,
+ prompt,
+ session_id=session_id,
+ sequence_start=sequence_start,
+ sequence_end=sequence_end,
+ stream=stream,
+ ignore_eos=ignore_eos,
+ skip_special_tokens=skip_special_tokens,
+ timeout=timeout,
+ **gen_params):
+ resp += text['choices'][0]['text']
+ if not resp:
+ continue
+ # remove stop_words
+ for sw in stop_words:
+ if sw in resp:
+ resp = filter_suffix(resp, stop_words)
+ finished = True
+ break
+ yield ModelStatusCode.STREAM_ING, resp, None
+ if finished:
+ break
+ yield ModelStatusCode.END, resp, None
+
+
+class LMDeployClient(LMDeployServer):
+ """
+
+ Args:
+ url (str): communicating address 'http://:' of
+ api_server
+ model_name (str): needed when model_path is a pytorch model on
+ huggingface.co, such as "internlm-chat-7b",
+ "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
+ """
+
+ def __init__(self, url: str, model_name: str, **kwargs):
+ BaseLLM.__init__(self, path=url, **kwargs)
+ from lmdeploy.serve.openai.api_client import APIClient
+ self.client = APIClient(url)
+ self.model_name = model_name
+
+
+class AsyncLMDeployPipeline(AsyncLLMMixin, LMDeployPipeline):
+ """
+
+ Args:
+ path (str): The path to the model.
+ It could be one of the following options:
+ - i) A local directory path of a turbomind model which is
+ converted by `lmdeploy convert` command or download
+ from ii) and iii).
+ - ii) The model_id of a lmdeploy-quantized model hosted
+ inside a model repo on huggingface.co, such as
+ "InternLM/internlm-chat-20b-4bit",
+ "lmdeploy/llama2-chat-70b-4bit", etc.
+ - iii) The model_id of a model hosted inside a model repo
+ on huggingface.co, such as "internlm/internlm-chat-7b",
+ "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
+ and so on.
+ model_name (str): needed when model_path is a pytorch model on
+ huggingface.co, such as "internlm-chat-7b",
+ "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
+ tp (int): tensor parallel
+ pipeline_cfg (dict): config of pipeline
+ """
+
+ async def generate(self,
+ inputs: Union[str, List[str]],
+ session_ids: Union[int, List[int]] = None,
+ do_preprocess: bool = None,
+ skip_special_tokens: bool = False,
+ return_dict: bool = False,
+ **kwargs):
+ """Return the chat completions in non-stream mode.
+
+ Args:
+ inputs (Union[str, List[str]]): input texts to be completed.
+ do_preprocess (bool): whether pre-process the messages. Default to
+ True, which means chat_template will be applied.
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+ from lmdeploy.messages import GenerationConfig, Response
+
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+ if session_ids is None:
+ session_ids = list(range(len(inputs)))
+ elif isinstance(session_ids, (int, str)):
+ session_ids = [session_ids]
+ assert len(inputs) == len(session_ids)
+
+ prompt = inputs
+ gen_params = self.update_gen_params(**kwargs)
+ gen_config = GenerationConfig(
+ skip_special_tokens=skip_special_tokens, **gen_params)
+
+ async def _inner_generate(uid, text):
+ resp = Response('', 0, 0, uid)
+ async for out in self.model.generate(
+ text,
+ uid,
+ gen_config,
+ stream_response=True,
+ sequence_start=True,
+ sequence_end=True,
+ do_preprocess=do_preprocess,
+ **kwargs):
+ resp.text += out.response
+ resp.generate_token_len = out.generate_token_len
+ resp.input_token_len = out.input_token_len
+ resp.finish_reason = out.finish_reason
+ if out.token_ids:
+ resp.token_ids.extend(out.token_ids)
+ if out.logprobs:
+ if resp.logprobs is None:
+ resp.logprobs = []
+ resp.logprobs.extend(out.logprobs)
+ return resp
+
+ response = await asyncio.gather(*[
+ _inner_generate(sid, inp) for sid, inp in zip(session_ids, prompt)
+ ])
+ texts = [resp.text for resp in response]
+ # remove stop_words
+ texts = filter_suffix(texts, self.gen_params.get('stop_words'))
+ for resp, text in zip(response, texts):
+ resp.text = text
+ if batched:
+ return [asdict(resp)
+ for resp in response] if return_dict else texts
+ return asdict(response[0]) if return_dict else texts[0]
+
+
+class AsyncLMDeployServer(AsyncLLMMixin, LMDeployServer):
+ """
+
+ Args:
+ path (str): The path to the model.
+ It could be one of the following options:
+ - i) A local directory path of a turbomind model which is
+ converted by `lmdeploy convert` command or download from
+ ii) and iii).
+ - ii) The model_id of a lmdeploy-quantized model hosted
+ inside a model repo on huggingface.co, such as
+ "InternLM/internlm-chat-20b-4bit",
+ "lmdeploy/llama2-chat-70b-4bit", etc.
+ - iii) The model_id of a model hosted inside a model repo
+ on huggingface.co, such as "internlm/internlm-chat-7b",
+ "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
+ and so on.
+ model_name (str): needed when model_path is a pytorch model on
+ huggingface.co, such as "internlm-chat-7b",
+ "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
+ server_name (str): host ip for serving
+ server_port (int): server port
+ tp (int): tensor parallel
+ log_level (str): set log level whose value among
+ [CRITICAL, ERROR, WARNING, INFO, DEBUG]
+ """
+
+ async def generate(
+ self,
+ inputs: Union[str, List[str]],
+ session_ids: Union[int, List[int]] = None,
+ sequence_start: bool = True,
+ sequence_end: bool = True,
+ ignore_eos: bool = False,
+ skip_special_tokens: Optional[bool] = False,
+ timeout: int = 30,
+ **kwargs,
+ ):
+ """Start a new round conversation of a session. Return the chat
+ completions in non-stream mode.
+
+ Args:
+ inputs (str, List[str]): user's prompt(s) in this round
+ session_ids (int, List[int]): session id(s)
+ sequence_start (bool): start flag of a session
+ sequence_end (bool): end flag of a session
+ ignore_eos (bool): indicator for ignoring eos
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ timeout (int): max time to wait for response
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+ from lmdeploy.serve.openai.api_client import json_loads
+
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+
+ gen_params = self.update_gen_params(**kwargs)
+ max_new_tokens = gen_params.pop('max_new_tokens')
+ gen_params.update(max_tokens=max_new_tokens)
+
+ responses = [''] * len(inputs)
+ pload = dict(
+ model=self.model_name,
+ prompt=inputs,
+ sequence_start=sequence_start,
+ sequence_end=sequence_end,
+ stream=False,
+ ignore_eos=ignore_eos,
+ skip_special_tokens=skip_special_tokens,
+ timeout=timeout,
+ **gen_params)
+ async with aiohttp.ClientSession(
+ timeout=aiohttp.ClientTimeout(3 * 3600)) as session:
+ async with session.post(
+ self.client.completions_v1_url,
+ headers=self.client.headers,
+ json=pload) as resp:
+ async for chunk in resp.content:
+ if chunk:
+ decoded = chunk.decode('utf-8')
+ output = json_loads(decoded)
+ responses = [
+ response + item['text'] for response, item in zip(
+ responses, output['choices'])
+ ]
+ # remove stop_words
+ responses = filter_suffix(responses, self.gen_params.get('stop_words'))
+ if not batched:
+ return responses[0]
+ return responses
+
+ async def stream_chat(
+ self,
+ inputs: List[dict],
+ session_id: int = None,
+ sequence_start: bool = True,
+ sequence_end: bool = True,
+ stream: bool = True,
+ ignore_eos: bool = False,
+ skip_special_tokens: Optional[bool] = False,
+ timeout: int = 30,
+ **kwargs,
+ ):
+ """Start a new round conversation of a session. Return the chat
+ completions in stream mode.
+
+ Args:
+ inputs (List[dict]): user's inputs in this round conversation
+ session_id (int): session id
+ sequence_start (bool): start flag of a session
+ sequence_end (bool): end flag of a session
+ stream (bool): return in a streaming format if enabled
+ ignore_eos (bool): indicator for ignoring eos
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ timeout (int): max time to wait for response
+ Returns:
+ tuple(Status, str, int): status, text/chat completion,
+ generated token number
+ """
+ from lmdeploy.serve.openai.api_client import json_loads
+
+ gen_params = self.update_gen_params(**kwargs)
+ max_new_tokens = gen_params.pop('max_new_tokens')
+ gen_params.update(max_tokens=max_new_tokens)
+ prompt = self.template_parser(inputs)
+
+ response = ''
+ finished = False
+ stop_words = self.gen_params.get('stop_words')
+
+ pload = dict(
+ model=self.model_name,
+ prompt=prompt,
+ sequence_start=sequence_start,
+ sequence_end=sequence_end,
+ stream=stream,
+ ignore_eos=ignore_eos,
+ skip_special_tokens=skip_special_tokens,
+ timeout=timeout,
+ **gen_params)
+ async with aiohttp.ClientSession(
+ timeout=aiohttp.ClientTimeout(3 * 3600)) as session:
+ async with session.post(
+ self.client.completions_v1_url,
+ headers=self.client.headers,
+ json=pload) as resp:
+ async for chunk in resp.content:
+ if chunk:
+ decoded = chunk.decode('utf-8')
+ if not decoded.strip() or decoded.rstrip(
+ ) == 'data: [DONE]':
+ continue
+ if decoded[:6] == 'data: ':
+ decoded = decoded[6:]
+ output = json_loads(decoded)
+ response += output['choices'][0]['text']
+ if not response:
+ continue
+ # remove stop_words
+ for sw in stop_words:
+ if sw in response:
+ response = filter_suffix(response, stop_words)
+ finished = True
+ break
+ yield ModelStatusCode.STREAM_ING, response, None
+ if finished:
+ break
+ yield ModelStatusCode.END, response, None
+
+
+class AsyncLMDeployClient(AsyncLMDeployServer):
+ """
+
+ Args:
+ url (str): communicating address 'http://:' of
+ api_server
+ model_name (str): needed when model_path is a pytorch model on
+ huggingface.co, such as "internlm-chat-7b",
+ "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
+ """
+
+ def __init__(self, url: str, model_name: str, **kwargs):
+ BaseLLM.__init__(self, path=url, **kwargs)
+ from lmdeploy.serve.openai.api_client import APIClient
+ self.client = APIClient(url)
+ self.model_name = model_name
diff --git a/lagent/llms/meta_template.py b/lagent/llms/meta_template.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b4ed978889619367636431801ffba8fcc462f0e
--- /dev/null
+++ b/lagent/llms/meta_template.py
@@ -0,0 +1,40 @@
+INTERNLM2_META = [
+ dict(
+ role='system',
+ begin=dict(
+ with_name='<|im_start|>system name={name}\n',
+ without_name='<|im_start|>system\n',
+ name={
+ 'interpreter': '<|interpreter|>',
+ 'plugin': '<|plugin|>',
+ }),
+ end='<|im_end|>\n',
+ ),
+ dict(
+ role='user',
+ begin=dict(
+ with_name='<|im_start|>user name={name}\n',
+ without_name='<|im_start|>user\n',
+ ),
+ end='<|im_end|>\n'),
+ dict(
+ role='assistant',
+ begin=dict(
+ with_name='<|im_start|>assistant name={name}\n',
+ without_name='<|im_start|>assistant\n',
+ name={
+ 'interpreter': '<|interpreter|>',
+ 'plugin': '<|plugin|>',
+ }),
+ end='<|im_end|>\n'),
+ dict(
+ role='environment',
+ begin=dict(
+ with_name='<|im_start|>environment name={name}\n',
+ without_name='<|im_start|>environment\n',
+ name={
+ 'interpreter': '<|interpreter|>',
+ 'plugin': '<|plugin|>',
+ }),
+ end='<|im_end|>\n'),
+]
diff --git a/lagent/llms/openai.py b/lagent/llms/openai.py
new file mode 100644
index 0000000000000000000000000000000000000000..ffbd1b3de10bb6799c673784367acb476fe495cf
--- /dev/null
+++ b/lagent/llms/openai.py
@@ -0,0 +1,924 @@
+import asyncio
+import json
+import os
+import time
+import traceback
+import warnings
+from concurrent.futures import ThreadPoolExecutor
+from logging import getLogger
+from threading import Lock
+from typing import AsyncGenerator, Dict, List, Optional, Union
+
+import aiohttp
+import requests
+
+from ..schema import ModelStatusCode
+from ..utils import filter_suffix
+from .base_api import AsyncBaseAPILLM, BaseAPILLM
+
+warnings.simplefilter('default')
+
+OPENAI_API_BASE = 'https://api.openai.com/v1/chat/completions'
+
+
+class GPTAPI(BaseAPILLM):
+ """Model wrapper around OpenAI's models.
+
+ Args:
+ model_type (str): The name of OpenAI's model.
+ retry (int): Number of retires if the API call fails. Defaults to 2.
+ key (str or List[str]): OpenAI key(s). In particular, when it
+ is set to "ENV", the key will be fetched from the environment
+ variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
+ list, the keys will be used in round-robin manner. Defaults to
+ 'ENV'.
+ org (str or List[str], optional): OpenAI organization(s). If not
+ specified, OpenAI uses the default organization bound to each API
+ key. If specified, the orgs will be posted with each request in
+ round-robin manner. Defaults to None.
+ meta_template (Dict, optional): The model's meta prompt
+ template if needed, in case the requirement of injecting or
+ wrapping of any meta instructions.
+ api_base (str): The base url of OpenAI's API. Defaults to
+ 'https://api.openai.com/v1/chat/completions'.
+ gen_params: Default generation configuration which could be overridden
+ on the fly of generation.
+ """
+
+ is_api: bool = True
+
+ def __init__(self,
+ model_type: str = 'gpt-3.5-turbo',
+ retry: int = 2,
+ json_mode: bool = False,
+ key: Union[str, List[str]] = 'ENV',
+ org: Optional[Union[str, List[str]]] = None,
+ meta_template: Optional[Dict] = [
+ dict(role='system', api_role='system'),
+ dict(role='user', api_role='user'),
+ dict(role='assistant', api_role='assistant'),
+ dict(role='environment', api_role='system')
+ ],
+ api_base: str = OPENAI_API_BASE,
+ proxies: Optional[Dict] = None,
+ **gen_params):
+ if 'top_k' in gen_params:
+ warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.',
+ DeprecationWarning)
+ gen_params.pop('top_k')
+ super().__init__(
+ model_type=model_type,
+ meta_template=meta_template,
+ retry=retry,
+ **gen_params)
+ self.gen_params.pop('top_k')
+ self.logger = getLogger(__name__)
+
+ if isinstance(key, str):
+ self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key]
+ else:
+ self.keys = key
+
+ # record invalid keys and skip them when requesting API
+ # - keys have insufficient_quota
+ self.invalid_keys = set()
+
+ self.key_ctr = 0
+ if isinstance(org, str):
+ self.orgs = [org]
+ else:
+ self.orgs = org
+ self.org_ctr = 0
+ self.url = api_base
+ self.model_type = model_type
+ self.proxies = proxies
+ self.json_mode = json_mode
+
+ def chat(
+ self,
+ inputs: Union[List[dict], List[List[dict]]],
+ **gen_params,
+ ) -> Union[str, List[str]]:
+ """Generate responses given the contexts.
+
+ Args:
+ inputs (Union[List[dict], List[List[dict]]]): a list of messages
+ or list of lists of messages
+ gen_params: additional generation configuration
+
+ Returns:
+ Union[str, List[str]]: generated string(s)
+ """
+ assert isinstance(inputs, list)
+ if 'max_tokens' in gen_params:
+ raise NotImplementedError('unsupported parameter: max_tokens')
+ gen_params = {**self.gen_params, **gen_params}
+ with ThreadPoolExecutor(max_workers=20) as executor:
+ tasks = [
+ executor.submit(self._chat,
+ self.template_parser._prompt2api(messages),
+ **gen_params)
+ for messages in (
+ [inputs] if isinstance(inputs[0], dict) else inputs)
+ ]
+ ret = [task.result() for task in tasks]
+ return ret[0] if isinstance(inputs[0], dict) else ret
+
+ def stream_chat(
+ self,
+ inputs: List[dict],
+ **gen_params,
+ ):
+ """Generate responses given the contexts.
+
+ Args:
+ inputs (List[dict]): a list of messages
+ gen_params: additional generation configuration
+
+ Returns:
+ str: generated string
+ """
+ assert isinstance(inputs, list)
+ if 'max_tokens' in gen_params:
+ raise NotImplementedError('unsupported parameter: max_tokens')
+ gen_params = self.update_gen_params(**gen_params)
+ gen_params['stream'] = True
+
+ resp = ''
+ finished = False
+ stop_words = gen_params.get('stop_words')
+ if stop_words is None:
+ stop_words = []
+ # mapping to role that openai supports
+ messages = self.template_parser._prompt2api(inputs)
+ for text in self._stream_chat(messages, **gen_params):
+ if self.model_type.lower().startswith('qwen'):
+ resp = text
+ else:
+ resp += text
+ if not resp:
+ continue
+ # remove stop_words
+ for sw in stop_words:
+ if sw in resp:
+ resp = filter_suffix(resp, stop_words)
+ finished = True
+ break
+ yield ModelStatusCode.STREAM_ING, resp, None
+ if finished:
+ break
+ yield ModelStatusCode.END, resp, None
+
+ def _chat(self, messages: List[dict], **gen_params) -> str:
+ """Generate completion from a list of templates.
+
+ Args:
+ messages (List[dict]): a list of prompt dictionaries
+ gen_params: additional generation configuration
+
+ Returns:
+ str: The generated string.
+ """
+ assert isinstance(messages, list)
+
+ header, data = self.generate_request_data(
+ model_type=self.model_type,
+ messages=messages,
+ gen_params=gen_params,
+ json_mode=self.json_mode)
+
+ max_num_retries, errmsg = 0, ''
+ while max_num_retries < self.retry:
+ with Lock():
+ if len(self.invalid_keys) == len(self.keys):
+ raise RuntimeError('All keys have insufficient quota.')
+
+ # find the next valid key
+ while True:
+ self.key_ctr += 1
+ if self.key_ctr == len(self.keys):
+ self.key_ctr = 0
+
+ if self.keys[self.key_ctr] not in self.invalid_keys:
+ break
+
+ key = self.keys[self.key_ctr]
+ header['Authorization'] = f'Bearer {key}'
+
+ if self.orgs:
+ with Lock():
+ self.org_ctr += 1
+ if self.org_ctr == len(self.orgs):
+ self.org_ctr = 0
+ header['OpenAI-Organization'] = self.orgs[self.org_ctr]
+
+ response = dict()
+ try:
+ raw_response = requests.post(
+ self.url,
+ headers=header,
+ data=json.dumps(data),
+ proxies=self.proxies)
+ response = raw_response.json()
+ return response['choices'][0]['message']['content'].strip()
+ except requests.ConnectionError:
+ errmsg = 'Got connection error ' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ continue
+ except requests.JSONDecodeError:
+ errmsg = 'JsonDecode error, got ' + str(raw_response.content)
+ self.logger.error(errmsg)
+ continue
+ except KeyError:
+ if 'error' in response:
+ if response['error']['code'] == 'rate_limit_exceeded':
+ time.sleep(1)
+ continue
+ elif response['error']['code'] == 'insufficient_quota':
+ self.invalid_keys.add(key)
+ self.logger.warn(f'insufficient_quota key: {key}')
+ continue
+
+ errmsg = 'Find error message in response: ' + str(
+ response['error'])
+ self.logger.error(errmsg)
+ except Exception as error:
+ errmsg = str(error) + '\n' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ max_num_retries += 1
+
+ raise RuntimeError('Calling OpenAI failed after retrying for '
+ f'{max_num_retries} times. Check the logs for '
+ f'details. errmsg: {errmsg}')
+
+ def _stream_chat(self, messages: List[dict], **gen_params) -> str:
+ """Generate completion from a list of templates.
+
+ Args:
+ messages (List[dict]): a list of prompt dictionaries
+ gen_params: additional generation configuration
+
+ Returns:
+ str: The generated string.
+ """
+
+ def streaming(raw_response):
+ for chunk in raw_response.iter_lines(
+ chunk_size=8192, decode_unicode=False, delimiter=b'\n'):
+ if chunk:
+ decoded = chunk.decode('utf-8')
+ if decoded.startswith('data: [DONE]'):
+ return
+ if decoded[:5] == 'data:':
+ decoded = decoded[5:]
+ if decoded[0] == ' ':
+ decoded = decoded[1:]
+ else:
+ print(decoded)
+ continue
+ try:
+ response = json.loads(decoded)
+ if 'code' in response and response['code'] == -20003:
+ # Context exceeds maximum length
+ yield ''
+ return
+ if self.model_type.lower().startswith('qwen'):
+ choice = response['output']['choices'][0]
+ yield choice['message']['content']
+ if choice['finish_reason'] == 'stop':
+ return
+ else:
+ choice = response['choices'][0]
+ if choice['finish_reason'] == 'stop':
+ return
+ yield choice['delta'].get('content', '')
+ except Exception as exc:
+ msg = f'response {decoded} lead to exception of {str(exc)}'
+ self.logger.error(msg)
+ raise Exception(msg) from exc
+
+ assert isinstance(messages, list)
+
+ header, data = self.generate_request_data(
+ model_type=self.model_type,
+ messages=messages,
+ gen_params=gen_params,
+ json_mode=self.json_mode)
+
+ max_num_retries, errmsg = 0, ''
+ while max_num_retries < self.retry:
+ if len(self.invalid_keys) == len(self.keys):
+ raise RuntimeError('All keys have insufficient quota.')
+
+ # find the next valid key
+ while True:
+ self.key_ctr += 1
+ if self.key_ctr == len(self.keys):
+ self.key_ctr = 0
+
+ if self.keys[self.key_ctr] not in self.invalid_keys:
+ break
+
+ key = self.keys[self.key_ctr]
+ header['Authorization'] = f'Bearer {key}'
+
+ if self.orgs:
+ self.org_ctr += 1
+ if self.org_ctr == len(self.orgs):
+ self.org_ctr = 0
+ header['OpenAI-Organization'] = self.orgs[self.org_ctr]
+
+ response = dict()
+ try:
+ raw_response = requests.post(
+ self.url,
+ headers=header,
+ data=json.dumps(data),
+ proxies=self.proxies)
+ return streaming(raw_response)
+ except requests.ConnectionError:
+ errmsg = 'Got connection error ' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ continue
+ except requests.JSONDecodeError:
+ errmsg = 'JsonDecode error, got ' + str(raw_response.content)
+ self.logger.error(errmsg)
+ continue
+ except KeyError:
+ if 'error' in response:
+ if response['error']['code'] == 'rate_limit_exceeded':
+ time.sleep(1)
+ continue
+ elif response['error']['code'] == 'insufficient_quota':
+ self.invalid_keys.add(key)
+ self.logger.warn(f'insufficient_quota key: {key}')
+ continue
+
+ errmsg = 'Find error message in response: ' + str(
+ response['error'])
+ self.logger.error(errmsg)
+ except Exception as error:
+ errmsg = str(error) + '\n' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ max_num_retries += 1
+
+ raise RuntimeError('Calling OpenAI failed after retrying for '
+ f'{max_num_retries} times. Check the logs for '
+ f'details. errmsg: {errmsg}')
+
+ def generate_request_data(self,
+ model_type,
+ messages,
+ gen_params,
+ json_mode=False):
+ """
+ Generates the request data for different model types.
+
+ Args:
+ model_type (str): The type of the model (e.g., 'gpt', 'internlm', 'qwen').
+ messages (list): The list of messages to be sent to the model.
+ gen_params (dict): The generation parameters.
+ json_mode (bool): Flag to determine if the response format should be JSON.
+
+ Returns:
+ tuple: A tuple containing the header and the request data.
+ """
+ # Copy generation parameters to avoid modifying the original dictionary
+ gen_params = gen_params.copy()
+
+ # Hold out 100 tokens due to potential errors in token calculation
+ max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
+ if max_tokens <= 0:
+ return '', ''
+
+ # Initialize the header
+ header = {
+ 'content-type': 'application/json',
+ }
+
+ # Common parameters processing
+ gen_params['max_tokens'] = max_tokens
+ if 'stop_words' in gen_params:
+ gen_params['stop'] = gen_params.pop('stop_words')
+ if 'repetition_penalty' in gen_params:
+ gen_params['frequency_penalty'] = gen_params.pop(
+ 'repetition_penalty')
+
+ # Model-specific processing
+ data = {}
+ if model_type.lower().startswith('gpt'):
+ if 'top_k' in gen_params:
+ warnings.warn(
+ '`top_k` parameter is deprecated in OpenAI APIs.',
+ DeprecationWarning)
+ gen_params.pop('top_k')
+ gen_params.pop('skip_special_tokens', None)
+ gen_params.pop('session_id', None)
+ data = {
+ 'model': model_type,
+ 'messages': messages,
+ 'n': 1,
+ **gen_params
+ }
+ if json_mode:
+ data['response_format'] = {'type': 'json_object'}
+ elif model_type.lower().startswith('internlm'):
+ data = {
+ 'model': model_type,
+ 'messages': messages,
+ 'n': 1,
+ **gen_params
+ }
+ if json_mode:
+ data['response_format'] = {'type': 'json_object'}
+ elif model_type.lower().startswith('qwen'):
+ header['X-DashScope-SSE'] = 'enable'
+ gen_params.pop('skip_special_tokens', None)
+ gen_params.pop('session_id', None)
+ if 'frequency_penalty' in gen_params:
+ gen_params['repetition_penalty'] = gen_params.pop(
+ 'frequency_penalty')
+ gen_params['result_format'] = 'message'
+ data = {
+ 'model': model_type,
+ 'input': {
+ 'messages': messages
+ },
+ 'parameters': {
+ **gen_params
+ }
+ }
+ else:
+ raise NotImplementedError(
+ f'Model type {model_type} is not supported')
+
+ return header, data
+
+ def tokenize(self, prompt: str) -> list:
+ """Tokenize the input prompt.
+
+ Args:
+ prompt (str): Input string.
+
+ Returns:
+ list: token ids
+ """
+ import tiktoken
+ self.tiktoken = tiktoken
+ enc = self.tiktoken.encoding_for_model(self.model_type)
+ return enc.encode(prompt)
+
+
+class AsyncGPTAPI(AsyncBaseAPILLM):
+ """Model wrapper around OpenAI's models.
+
+ Args:
+ model_type (str): The name of OpenAI's model.
+ retry (int): Number of retires if the API call fails. Defaults to 2.
+ key (str or List[str]): OpenAI key(s). In particular, when it
+ is set to "ENV", the key will be fetched from the environment
+ variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
+ list, the keys will be used in round-robin manner. Defaults to
+ 'ENV'.
+ org (str or List[str], optional): OpenAI organization(s). If not
+ specified, OpenAI uses the default organization bound to each API
+ key. If specified, the orgs will be posted with each request in
+ round-robin manner. Defaults to None.
+ meta_template (Dict, optional): The model's meta prompt
+ template if needed, in case the requirement of injecting or
+ wrapping of any meta instructions.
+ api_base (str): The base url of OpenAI's API. Defaults to
+ 'https://api.openai.com/v1/chat/completions'.
+ gen_params: Default generation configuration which could be overridden
+ on the fly of generation.
+ """
+
+ is_api: bool = True
+
+ def __init__(self,
+ model_type: str = 'gpt-3.5-turbo',
+ retry: int = 2,
+ json_mode: bool = False,
+ key: Union[str, List[str]] = 'ENV',
+ org: Optional[Union[str, List[str]]] = None,
+ meta_template: Optional[Dict] = [
+ dict(role='system', api_role='system'),
+ dict(role='user', api_role='user'),
+ dict(role='assistant', api_role='assistant')
+ ],
+ api_base: str = OPENAI_API_BASE,
+ proxies: Optional[Dict] = None,
+ **gen_params):
+ if 'top_k' in gen_params:
+ warnings.warn('`top_k` parameter is deprecated in OpenAI APIs.',
+ DeprecationWarning)
+ gen_params.pop('top_k')
+ super().__init__(
+ model_type=model_type,
+ meta_template=meta_template,
+ retry=retry,
+ **gen_params)
+ self.gen_params.pop('top_k')
+ self.logger = getLogger(__name__)
+
+ if isinstance(key, str):
+ self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key]
+ else:
+ self.keys = key
+
+ # record invalid keys and skip them when requesting API
+ # - keys have insufficient_quota
+ self.invalid_keys = set()
+
+ self.key_ctr = 0
+ if isinstance(org, str):
+ self.orgs = [org]
+ else:
+ self.orgs = org
+ self.org_ctr = 0
+ self.url = api_base
+ self.model_type = model_type
+ self.proxies = proxies or {}
+ self.json_mode = json_mode
+
+ async def chat(
+ self,
+ inputs: Union[List[dict], List[List[dict]]],
+ session_ids: Union[int, List[int]] = None,
+ **gen_params,
+ ) -> Union[str, List[str]]:
+ """Generate responses given the contexts.
+
+ Args:
+ inputs (Union[List[dict], List[List[dict]]]): a list of messages
+ or list of lists of messages
+ gen_params: additional generation configuration
+
+ Returns:
+ Union[str, List[str]]: generated string(s)
+ """
+ assert isinstance(inputs, list)
+ if 'max_tokens' in gen_params:
+ raise NotImplementedError('unsupported parameter: max_tokens')
+ gen_params = {**self.gen_params, **gen_params}
+ tasks = [
+ self._chat(messages, **gen_params) for messages in (
+ [inputs] if isinstance(inputs[0], dict) else inputs)
+ ]
+ ret = await asyncio.gather(*tasks)
+ return ret[0] if isinstance(inputs[0], dict) else ret
+
+ async def stream_chat(
+ self,
+ inputs: List[dict],
+ **gen_params,
+ ):
+ """Generate responses given the contexts.
+
+ Args:
+ inputs (List[dict]): a list of messages
+ gen_params: additional generation configuration
+
+ Returns:
+ str: generated string
+ """
+ assert isinstance(inputs, list)
+ if 'max_tokens' in gen_params:
+ raise NotImplementedError('unsupported parameter: max_tokens')
+ gen_params = self.update_gen_params(**gen_params)
+ gen_params['stream'] = True
+
+ resp = ''
+ finished = False
+ stop_words = gen_params.get('stop_words')
+ if stop_words is None:
+ stop_words = []
+ # mapping to role that openai supports
+ messages = self.template_parser._prompt2api(inputs)
+ async for text in self._stream_chat(messages, **gen_params):
+ if self.model_type.lower().startswith('qwen'):
+ resp = text
+ else:
+ resp += text
+ if not resp:
+ continue
+ # remove stop_words
+ for sw in stop_words:
+ if sw in resp:
+ resp = filter_suffix(resp, stop_words)
+ finished = True
+ break
+ yield ModelStatusCode.STREAM_ING, resp, None
+ if finished:
+ break
+ yield ModelStatusCode.END, resp, None
+
+ async def _chat(self, messages: List[dict], **gen_params) -> str:
+ """Generate completion from a list of templates.
+
+ Args:
+ messages (List[dict]): a list of prompt dictionaries
+ gen_params: additional generation configuration
+
+ Returns:
+ str: The generated string.
+ """
+ assert isinstance(messages, list)
+
+ header, data = self.generate_request_data(
+ model_type=self.model_type,
+ messages=messages,
+ gen_params=gen_params,
+ json_mode=self.json_mode)
+
+ max_num_retries, errmsg = 0, ''
+ while max_num_retries < self.retry:
+ if len(self.invalid_keys) == len(self.keys):
+ raise RuntimeError('All keys have insufficient quota.')
+
+ # find the next valid key
+ while True:
+ self.key_ctr += 1
+ if self.key_ctr == len(self.keys):
+ self.key_ctr = 0
+
+ if self.keys[self.key_ctr] not in self.invalid_keys:
+ break
+
+ key = self.keys[self.key_ctr]
+ header['Authorization'] = f'Bearer {key}'
+
+ if self.orgs:
+ self.org_ctr += 1
+ if self.org_ctr == len(self.orgs):
+ self.org_ctr = 0
+ header['OpenAI-Organization'] = self.orgs[self.org_ctr]
+
+ response = dict()
+ try:
+ async with aiohttp.ClientSession() as session:
+ async with session.post(
+ self.url,
+ headers=header,
+ json=data,
+ proxy=self.proxies.get(
+ 'https', self.proxies.get('http'))) as resp:
+ response = await resp.json()
+ return response['choices'][0]['message'][
+ 'content'].strip()
+ except aiohttp.ClientConnectionError:
+ errmsg = 'Got connection error ' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ continue
+ except aiohttp.ClientResponseError as e:
+ errmsg = 'Response error, got ' + str(e)
+ self.logger.error(errmsg)
+ continue
+ except json.JSONDecodeError:
+ errmsg = 'JsonDecode error, got ' + (await resp.text(
+ errors='replace'))
+ self.logger.error(errmsg)
+ continue
+ except KeyError:
+ if 'error' in response:
+ if response['error']['code'] == 'rate_limit_exceeded':
+ time.sleep(1)
+ continue
+ elif response['error']['code'] == 'insufficient_quota':
+ self.invalid_keys.add(key)
+ self.logger.warn(f'insufficient_quota key: {key}')
+ continue
+
+ errmsg = 'Find error message in response: ' + str(
+ response['error'])
+ self.logger.error(errmsg)
+ except Exception as error:
+ errmsg = str(error) + '\n' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ max_num_retries += 1
+
+ raise RuntimeError('Calling OpenAI failed after retrying for '
+ f'{max_num_retries} times. Check the logs for '
+ f'details. errmsg: {errmsg}')
+
+ async def _stream_chat(self, messages: List[dict],
+ **gen_params) -> AsyncGenerator[str, None]:
+ """Generate completion from a list of templates.
+
+ Args:
+ messages (List[dict]): a list of prompt dictionaries
+ gen_params: additional generation configuration
+
+ Returns:
+ str: The generated string.
+ """
+
+ async def streaming(raw_response):
+ async for chunk in raw_response.content:
+ if chunk:
+ decoded = chunk.decode('utf-8')
+ if decoded.startswith('data: [DONE]'):
+ return
+ if decoded[:5] == 'data:':
+ decoded = decoded[5:]
+ if decoded[0] == ' ':
+ decoded = decoded[1:]
+ else:
+ print(decoded)
+ continue
+ try:
+ response = json.loads(decoded)
+ if 'code' in response and response['code'] == -20003:
+ # Context exceeds maximum length
+ yield ''
+ return
+ if self.model_type.lower().startswith('qwen'):
+ choice = response['output']['choices'][0]
+ yield choice['message']['content']
+ if choice['finish_reason'] == 'stop':
+ return
+ else:
+ choice = response['choices'][0]
+ if choice['finish_reason'] == 'stop':
+ return
+ yield choice['delta'].get('content', '')
+ except Exception as exc:
+ msg = f'response {decoded} lead to exception of {str(exc)}'
+ self.logger.error(msg)
+ raise Exception(msg) from exc
+
+ assert isinstance(messages, list)
+
+ header, data = self.generate_request_data(
+ model_type=self.model_type,
+ messages=messages,
+ gen_params=gen_params,
+ json_mode=self.json_mode)
+
+ max_num_retries, errmsg = 0, ''
+ while max_num_retries < self.retry:
+ if len(self.invalid_keys) == len(self.keys):
+ raise RuntimeError('All keys have insufficient quota.')
+
+ # find the next valid key
+ while True:
+ self.key_ctr += 1
+ if self.key_ctr == len(self.keys):
+ self.key_ctr = 0
+
+ if self.keys[self.key_ctr] not in self.invalid_keys:
+ break
+
+ key = self.keys[self.key_ctr]
+ header['Authorization'] = f'Bearer {key}'
+
+ if self.orgs:
+ self.org_ctr += 1
+ if self.org_ctr == len(self.orgs):
+ self.org_ctr = 0
+ header['OpenAI-Organization'] = self.orgs[self.org_ctr]
+
+ response = dict()
+ try:
+ async with aiohttp.ClientSession() as session:
+ async with session.post(
+ self.url,
+ headers=header,
+ json=data,
+ proxy=self.proxies.get(
+ 'https',
+ self.proxies.get('http'))) as raw_response:
+ async for msg in streaming(raw_response):
+ yield msg
+ return
+ except aiohttp.ClientConnectionError:
+ errmsg = 'Got connection error ' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ continue
+ except aiohttp.ClientResponseError as e:
+ errmsg = 'Response error, got ' + str(e)
+ self.logger.error(errmsg)
+ continue
+ except KeyError:
+ if 'error' in response:
+ if response['error']['code'] == 'rate_limit_exceeded':
+ time.sleep(1)
+ continue
+ elif response['error']['code'] == 'insufficient_quota':
+ self.invalid_keys.add(key)
+ self.logger.warn(f'insufficient_quota key: {key}')
+ continue
+
+ errmsg = 'Find error message in response: ' + str(
+ response['error'])
+ self.logger.error(errmsg)
+ except Exception as error:
+ errmsg = str(error) + '\n' + str(traceback.format_exc())
+ self.logger.error(errmsg)
+ max_num_retries += 1
+
+ raise RuntimeError('Calling OpenAI failed after retrying for '
+ f'{max_num_retries} times. Check the logs for '
+ f'details. errmsg: {errmsg}')
+
+ def generate_request_data(self,
+ model_type,
+ messages,
+ gen_params,
+ json_mode=False):
+ """
+ Generates the request data for different model types.
+
+ Args:
+ model_type (str): The type of the model (e.g., 'gpt', 'internlm', 'qwen').
+ messages (list): The list of messages to be sent to the model.
+ gen_params (dict): The generation parameters.
+ json_mode (bool): Flag to determine if the response format should be JSON.
+
+ Returns:
+ tuple: A tuple containing the header and the request data.
+ """
+ # Copy generation parameters to avoid modifying the original dictionary
+ gen_params = gen_params.copy()
+
+ # Hold out 100 tokens due to potential errors in token calculation
+ max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
+ if max_tokens <= 0:
+ return '', ''
+
+ # Initialize the header
+ header = {
+ 'content-type': 'application/json',
+ }
+
+ # Common parameters processing
+ gen_params['max_tokens'] = max_tokens
+ if 'stop_words' in gen_params:
+ gen_params['stop'] = gen_params.pop('stop_words')
+ if 'repetition_penalty' in gen_params:
+ gen_params['frequency_penalty'] = gen_params.pop(
+ 'repetition_penalty')
+
+ # Model-specific processing
+ data = {}
+ if model_type.lower().startswith('gpt'):
+ if 'top_k' in gen_params:
+ warnings.warn(
+ '`top_k` parameter is deprecated in OpenAI APIs.',
+ DeprecationWarning)
+ gen_params.pop('top_k')
+ gen_params.pop('skip_special_tokens', None)
+ gen_params.pop('session_id', None)
+ data = {
+ 'model': model_type,
+ 'messages': messages,
+ 'n': 1,
+ **gen_params
+ }
+ if json_mode:
+ data['response_format'] = {'type': 'json_object'}
+ elif model_type.lower().startswith('internlm'):
+ data = {
+ 'model': model_type,
+ 'messages': messages,
+ 'n': 1,
+ **gen_params
+ }
+ if json_mode:
+ data['response_format'] = {'type': 'json_object'}
+ elif model_type.lower().startswith('qwen'):
+ header['X-DashScope-SSE'] = 'enable'
+ gen_params.pop('skip_special_tokens', None)
+ gen_params.pop('session_id', None)
+ if 'frequency_penalty' in gen_params:
+ gen_params['repetition_penalty'] = gen_params.pop(
+ 'frequency_penalty')
+ gen_params['result_format'] = 'message'
+ data = {
+ 'model': model_type,
+ 'input': {
+ 'messages': messages
+ },
+ 'parameters': {
+ **gen_params
+ }
+ }
+ else:
+ raise NotImplementedError(
+ f'Model type {model_type} is not supported')
+
+ return header, data
+
+ def tokenize(self, prompt: str) -> list:
+ """Tokenize the input prompt.
+
+ Args:
+ prompt (str): Input string.
+
+ Returns:
+ list: token ids
+ """
+ import tiktoken
+ self.tiktoken = tiktoken
+ enc = self.tiktoken.encoding_for_model(self.model_type)
+ return enc.encode(prompt)
diff --git a/lagent/llms/sensenova.py b/lagent/llms/sensenova.py
new file mode 100644
index 0000000000000000000000000000000000000000..54a9f9eeb0f6b90d1c2ddb6cfaa415a7b5927ba4
--- /dev/null
+++ b/lagent/llms/sensenova.py
@@ -0,0 +1,406 @@
+import json
+import os
+import time
+import warnings
+from concurrent.futures import ThreadPoolExecutor
+from logging import getLogger
+from threading import Lock
+from typing import Dict, Generator, List, Optional, Tuple, Union
+
+import requests
+
+from lagent.schema import ModelStatusCode
+from lagent.utils.util import filter_suffix
+from .base_api import BaseAPILLM
+
+warnings.simplefilter('default')
+
+SENSENOVA_API_BASE = 'https://api.sensenova.cn/v1/llm/chat-completions'
+
+sensechat_models = {'SenseChat-5': 131072, 'SenseChat-5-Cantonese': 32768}
+
+
+class SensenovaAPI(BaseAPILLM):
+ """Model wrapper around SenseTime's models.
+
+ Args:
+ model_type (str): The name of SenseTime's model.
+ retry (int): Number of retires if the API call fails. Defaults to 2.
+ key (str or List[str]): SenseTime key(s). In particular, when it
+ is set to "ENV", the key will be fetched from the environment
+ variable $SENSENOVA_API_KEY. If it's a list, the keys will be
+ used in round-robin manner. Defaults to 'ENV'.
+ meta_template (Dict, optional): The model's meta prompt
+ template if needed, in case the requirement of injecting or
+ wrapping of any meta instructions.
+ sensenova_api_base (str): The base url of SenseTime's API. Defaults to
+ 'https://api.sensenova.cn/v1/llm/chat-completions'.
+ gen_params: Default generation configuration which could be overridden
+ on the fly of generation.
+ """
+
+ is_api: bool = True
+
+ def __init__(
+ self,
+ model_type: str = 'SenseChat-5-Cantonese',
+ retry: int = 2,
+ json_mode: bool = False,
+ key: Union[str, List[str]] = 'ENV',
+ meta_template: Optional[Dict] = [
+ dict(role='system', api_role='system'),
+ dict(role='user', api_role='user'),
+ dict(role='assistant', api_role='assistant'),
+ dict(role='environment', api_role='system'),
+ ],
+ sensenova_api_base: str = SENSENOVA_API_BASE,
+ proxies: Optional[Dict] = None,
+ **gen_params,
+ ):
+
+ super().__init__(
+ model_type=model_type,
+ meta_template=meta_template,
+ retry=retry,
+ **gen_params,
+ )
+ self.logger = getLogger(__name__)
+
+ if isinstance(key, str):
+ # First, apply for SenseNova's ak and sk from SenseTime staff
+ # Then, generated SENSENOVA_API_KEY using lagent.utils.gen_key.auto_gen_jwt_token(ak, sk)
+ self.keys = [
+ os.getenv('SENSENOVA_API_KEY') if key == 'ENV' else key
+ ]
+ else:
+ self.keys = key
+
+ # record invalid keys and skip them when requesting API
+ # - keys have insufficient_quota
+ self.invalid_keys = set()
+
+ self.key_ctr = 0
+ self.url = sensenova_api_base
+ self.model_type = model_type
+ self.proxies = proxies
+ self.json_mode = json_mode
+
+ def chat(
+ self,
+ inputs: Union[List[dict], List[List[dict]]],
+ **gen_params,
+ ) -> Union[str, List[str]]:
+ """Generate responses given the contexts.
+
+ Args:
+ inputs (Union[List[dict], List[List[dict]]]): a list of messages
+ or list of lists of messages
+ gen_params: additional generation configuration
+
+ Returns:
+ Union[str, List[str]]: generated string(s)
+ """
+ assert isinstance(inputs, list)
+ if 'max_tokens' in gen_params:
+ raise NotImplementedError('unsupported parameter: max_tokens')
+ gen_params = {**self.gen_params, **gen_params}
+ with ThreadPoolExecutor(max_workers=20) as executor:
+ tasks = [
+ executor.submit(self._chat,
+ self.template_parser._prompt2api(messages),
+ **gen_params)
+ for messages in (
+ [inputs] if isinstance(inputs[0], dict) else inputs)
+ ]
+ ret = [task.result() for task in tasks]
+ return ret[0] if isinstance(inputs[0], dict) else ret
+
+ def stream_chat(
+ self,
+ inputs: List[dict],
+ **gen_params,
+ ) -> Generator[Tuple[ModelStatusCode, str, Optional[str]], None, None]:
+ """Generate responses given the contexts.
+
+ Args:
+ inputs (List[dict]): a list of messages
+ gen_params: additional generation configuration
+
+ Yields:
+ Tuple[ModelStatusCode, str, Optional[str]]: Status code, generated string, and optional metadata
+ """
+ assert isinstance(inputs, list)
+ if 'max_tokens' in gen_params:
+ raise NotImplementedError('unsupported parameter: max_tokens')
+ gen_params = self.update_gen_params(**gen_params)
+ gen_params['stream'] = True
+
+ resp = ''
+ finished = False
+ stop_words = gen_params.get('stop_words') or []
+ messages = self.template_parser._prompt2api(inputs)
+ for text in self._stream_chat(messages, **gen_params):
+ # TODO 测试 resp = text 还是 resp += text
+ resp += text
+ if not resp:
+ continue
+ # remove stop_words
+ for sw in stop_words:
+ if sw in resp:
+ resp = filter_suffix(resp, stop_words)
+ finished = True
+ break
+ yield ModelStatusCode.STREAM_ING, resp, None
+ if finished:
+ break
+ yield ModelStatusCode.END, resp, None
+
+ def _chat(self, messages: List[dict], **gen_params) -> str:
+ """Generate completion from a list of templates.
+
+ Args:
+ messages (List[dict]): a list of prompt dictionaries
+ gen_params: additional generation configuration
+
+ Returns:
+ str: The generated string.
+ """
+ assert isinstance(messages, list)
+
+ header, data = self.generate_request_data(
+ model_type=self.model_type,
+ messages=messages,
+ gen_params=gen_params,
+ json_mode=self.json_mode,
+ )
+
+ max_num_retries = 0
+ while max_num_retries < self.retry:
+ self._wait()
+
+ with Lock():
+ if len(self.invalid_keys) == len(self.keys):
+ raise RuntimeError('All keys have insufficient quota.')
+
+ # find the next valid key
+ while True:
+ self.key_ctr += 1
+ if self.key_ctr == len(self.keys):
+ self.key_ctr = 0
+
+ if self.keys[self.key_ctr] not in self.invalid_keys:
+ break
+
+ key = self.keys[self.key_ctr]
+ header['Authorization'] = f'Bearer {key}'
+
+ response = dict()
+ try:
+ raw_response = requests.post(
+ self.url,
+ headers=header,
+ data=json.dumps(data),
+ proxies=self.proxies,
+ )
+ response = raw_response.json()
+ return response['choices'][0]['message']['content'].strip()
+ except requests.ConnectionError:
+ print('Got connection error, retrying...')
+ continue
+ except requests.JSONDecodeError:
+ print('JsonDecode error, got', str(raw_response.content))
+ continue
+ except KeyError:
+ if 'error' in response:
+ if response['error']['code'] == 'rate_limit_exceeded':
+ time.sleep(1)
+ continue
+ elif response['error']['code'] == 'insufficient_quota':
+ self.invalid_keys.add(key)
+ self.logger.warn(f'insufficient_quota key: {key}')
+ continue
+
+ print('Find error message in response: ',
+ str(response['error']))
+ except Exception as error:
+ print(str(error))
+ max_num_retries += 1
+
+ raise RuntimeError('Calling SenseTime failed after retrying for '
+ f'{max_num_retries} times. Check the logs for '
+ 'details.')
+
+ def _stream_chat(self, messages: List[dict], **gen_params) -> str:
+ """Generate completion from a list of templates.
+
+ Args:
+ messages (List[dict]): a list of prompt dictionaries
+ gen_params: additional generation configuration
+
+ Returns:
+ str: The generated string.
+ """
+
+ def streaming(raw_response):
+ for chunk in raw_response.iter_lines():
+ if chunk:
+ try:
+ decoded_chunk = chunk.decode('utf-8')
+ # print(f"Decoded chunk: {decoded_chunk}")
+
+ if decoded_chunk == 'data:[DONE]':
+ # print("Stream ended")
+ break
+
+ if decoded_chunk.startswith('data:'):
+ json_str = decoded_chunk[5:]
+ chunk_data = json.loads(json_str)
+
+ if 'data' in chunk_data and 'choices' in chunk_data[
+ 'data']:
+ choice = chunk_data['data']['choices'][0]
+ if 'delta' in choice:
+ content = choice['delta']
+ yield content
+ else:
+ print(f'Unexpected format: {decoded_chunk}')
+
+ except json.JSONDecodeError as e:
+ print(f'JSON parsing error: {e}')
+ except Exception as e:
+ print(
+ f'An error occurred while processing the chunk: {e}'
+ )
+
+ assert isinstance(messages, list)
+
+ header, data = self.generate_request_data(
+ model_type=self.model_type,
+ messages=messages,
+ gen_params=gen_params,
+ json_mode=self.json_mode,
+ )
+
+ max_num_retries = 0
+ while max_num_retries < self.retry:
+ if len(self.invalid_keys) == len(self.keys):
+ raise RuntimeError('All keys have insufficient quota.')
+
+ # find the next valid key
+ while True:
+ self.key_ctr += 1
+ if self.key_ctr == len(self.keys):
+ self.key_ctr = 0
+
+ if self.keys[self.key_ctr] not in self.invalid_keys:
+ break
+
+ key = self.keys[self.key_ctr]
+ header['Authorization'] = f'Bearer {key}'
+
+ response = dict()
+ try:
+ raw_response = requests.post(
+ self.url,
+ headers=header,
+ data=json.dumps(data),
+ proxies=self.proxies,
+ )
+ return streaming(raw_response)
+ except requests.ConnectionError:
+ print('Got connection error, retrying...')
+ continue
+ except requests.JSONDecodeError:
+ print('JsonDecode error, got', str(raw_response.content))
+ continue
+ except KeyError:
+ if 'error' in response:
+ if response['error']['code'] == 'rate_limit_exceeded':
+ time.sleep(1)
+ continue
+ elif response['error']['code'] == 'insufficient_quota':
+ self.invalid_keys.add(key)
+ self.logger.warn(f'insufficient_quota key: {key}')
+ continue
+
+ print('Find error message in response: ',
+ str(response['error']))
+ except Exception as error:
+ print(str(error))
+ max_num_retries += 1
+
+ raise RuntimeError('Calling SenseTime failed after retrying for '
+ f'{max_num_retries} times. Check the logs for '
+ 'details.')
+
+ def generate_request_data(self,
+ model_type,
+ messages,
+ gen_params,
+ json_mode=False):
+ """
+ Generates the request data for different model types.
+
+ Args:
+ model_type (str): The type of the model (e.g., 'sense').
+ messages (list): The list of messages to be sent to the model.
+ gen_params (dict): The generation parameters.
+ json_mode (bool): Flag to determine if the response format should be JSON.
+
+ Returns:
+ tuple: A tuple containing the header and the request data.
+ """
+ # Copy generation parameters to avoid modifying the original dictionary
+ gen_params = gen_params.copy()
+
+ # Hold out 100 tokens due to potential errors in token calculation
+ max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
+ if max_tokens <= 0:
+ return '', ''
+
+ # Initialize the header
+ header = {
+ 'content-type': 'application/json',
+ }
+
+ # Common parameters processing
+ gen_params['max_tokens'] = max_tokens
+ if 'stop_words' in gen_params:
+ gen_params['stop'] = gen_params.pop('stop_words')
+ if 'repetition_penalty' in gen_params:
+ gen_params['frequency_penalty'] = gen_params.pop(
+ 'repetition_penalty')
+
+ # Model-specific processing
+ data = {}
+ if model_type.lower().startswith('sense'):
+ gen_params.pop('skip_special_tokens', None)
+ gen_params.pop('session_id', None)
+ data = {
+ 'model': model_type,
+ 'messages': messages,
+ 'n': 1,
+ **gen_params
+ }
+ if json_mode:
+ data['response_format'] = {'type': 'json_object'}
+ else:
+ raise NotImplementedError(
+ f'Model type {model_type} is not supported')
+
+ return header, data
+
+ def tokenize(self, prompt: str) -> list:
+ """Tokenize the input prompt.
+
+ Args:
+ prompt (str): Input string.
+
+ Returns:
+ list: token ids
+ """
+ import tiktoken
+
+ self.tiktoken = tiktoken
+ enc = self.tiktoken.encoding_for_model('gpt-4o')
+ return enc.encode(prompt)
diff --git a/lagent/llms/vllm_wrapper.py b/lagent/llms/vllm_wrapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..c4a01cbe5b26ce2676bbc1beaf201483ee6a233b
--- /dev/null
+++ b/lagent/llms/vllm_wrapper.py
@@ -0,0 +1,176 @@
+import asyncio
+from typing import List, Union
+
+from lagent.llms.base_llm import AsyncBaseLLM, BaseLLM
+from lagent.utils.util import filter_suffix
+
+
+def asdict_completion(output):
+ return {
+ key: getattr(output, key)
+ for key in [
+ 'text', 'token_ids', 'cumulative_logprob', 'logprobs',
+ 'finish_reason', 'stop_reason'
+ ]
+ }
+
+
+class VllmModel(BaseLLM):
+ """
+ A wrapper of vLLM model.
+
+ Args:
+ path (str): The path to the model.
+ It could be one of the following options:
+ - i) A local directory path of a huggingface model.
+ - ii) The model_id of a model hosted inside a model repo
+ on huggingface.co, such as "internlm/internlm-chat-7b",
+ "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
+ and so on.
+ tp (int): tensor parallel
+ vllm_cfg (dict): Other kwargs for vllm model initialization.
+ """
+
+ def __init__(self, path: str, tp: int = 1, vllm_cfg=dict(), **kwargs):
+
+ super().__init__(path=path, **kwargs)
+ from vllm import LLM
+ self.model = LLM(
+ model=self.path,
+ trust_remote_code=True,
+ tensor_parallel_size=tp,
+ **vllm_cfg)
+
+ def generate(self,
+ inputs: Union[str, List[str]],
+ do_preprocess: bool = None,
+ skip_special_tokens: bool = False,
+ return_dict: bool = False,
+ **kwargs):
+ """Return the chat completions in non-stream mode.
+
+ Args:
+ inputs (Union[str, List[str]]): input texts to be completed.
+ do_preprocess (bool): whether pre-process the messages. Default to
+ True, which means chat_template will be applied.
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+ from vllm import SamplingParams
+
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+ prompt = inputs
+ gen_params = self.update_gen_params(**kwargs)
+ max_new_tokens = gen_params.pop('max_new_tokens')
+ stop_words = gen_params.pop('stop_words')
+
+ sampling_config = SamplingParams(
+ skip_special_tokens=skip_special_tokens,
+ max_tokens=max_new_tokens,
+ stop=stop_words,
+ **gen_params)
+ response = self.model.generate(prompt, sampling_params=sampling_config)
+ texts = [resp.outputs[0].text for resp in response]
+ # remove stop_words
+ texts = filter_suffix(texts, self.gen_params.get('stop_words'))
+ for resp, text in zip(response, texts):
+ resp.outputs[0].text = text
+ if batched:
+ return [asdict_completion(resp.outputs[0])
+ for resp in response] if return_dict else texts
+ return asdict_completion(
+ response[0].outputs[0]) if return_dict else texts[0]
+
+
+class AsyncVllmModel(AsyncBaseLLM):
+ """
+ A asynchronous wrapper of vLLM model.
+
+ Args:
+ path (str): The path to the model.
+ It could be one of the following options:
+ - i) A local directory path of a huggingface model.
+ - ii) The model_id of a model hosted inside a model repo
+ on huggingface.co, such as "internlm/internlm-chat-7b",
+ "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
+ and so on.
+ tp (int): tensor parallel
+ vllm_cfg (dict): Other kwargs for vllm model initialization.
+ """
+
+ def __init__(self, path: str, tp: int = 1, vllm_cfg=dict(), **kwargs):
+ super().__init__(path=path, **kwargs)
+ from vllm import AsyncEngineArgs, AsyncLLMEngine
+
+ engine_args = AsyncEngineArgs(
+ model=self.path,
+ trust_remote_code=True,
+ tensor_parallel_size=tp,
+ **vllm_cfg)
+ self.model = AsyncLLMEngine.from_engine_args(engine_args)
+
+ async def generate(self,
+ inputs: Union[str, List[str]],
+ session_ids: Union[int, List[int]] = None,
+ do_preprocess: bool = None,
+ skip_special_tokens: bool = False,
+ return_dict: bool = False,
+ **kwargs):
+ """Return the chat completions in non-stream mode.
+
+ Args:
+ inputs (Union[str, List[str]]): input texts to be completed.
+ do_preprocess (bool): whether pre-process the messages. Default to
+ True, which means chat_template will be applied.
+ skip_special_tokens (bool): Whether or not to remove special tokens
+ in the decoding. Default to be False.
+ Returns:
+ (a list of/batched) text/chat completion
+ """
+ from vllm import SamplingParams
+
+ batched = True
+ if isinstance(inputs, str):
+ inputs = [inputs]
+ batched = False
+ if session_ids is None:
+ session_ids = list(range(len(inputs)))
+ elif isinstance(session_ids, (int, str)):
+ session_ids = [session_ids]
+ assert len(inputs) == len(session_ids)
+
+ prompt = inputs
+ gen_params = self.update_gen_params(**kwargs)
+ max_new_tokens = gen_params.pop('max_new_tokens')
+ stop_words = gen_params.pop('stop_words')
+
+ sampling_config = SamplingParams(
+ skip_special_tokens=skip_special_tokens,
+ max_tokens=max_new_tokens,
+ stop=stop_words,
+ **gen_params)
+
+ async def _inner_generate(uid, text):
+ resp, generator = '', self.model.generate(
+ text, sampling_params=sampling_config, request_id=uid)
+ async for out in generator:
+ resp = out.outputs[0]
+ return resp
+
+ response = await asyncio.gather(*[
+ _inner_generate(sid, inp) for sid, inp in zip(session_ids, prompt)
+ ])
+ texts = [resp.text for resp in response]
+ # remove stop_words
+ texts = filter_suffix(texts, self.gen_params.get('stop_words'))
+ for resp, text in zip(response, texts):
+ resp.text = text
+ if batched:
+ return [asdict_completion(resp)
+ for resp in response] if return_dict else texts
+ return asdict_completion(response[0]) if return_dict else texts[0]
diff --git a/lagent/memory/__init__.py b/lagent/memory/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..13534ada0dd646809bb41c10e2fb82c6c18cbdcf
--- /dev/null
+++ b/lagent/memory/__init__.py
@@ -0,0 +1,4 @@
+from .base_memory import Memory
+from .manager import MemoryManager
+
+__all__ = ['Memory', 'MemoryManager']
diff --git a/lagent/memory/__pycache__/__init__.cpython-310.pyc b/lagent/memory/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e77cc7fe2371b5a5ba4b9d7586d3a3c6a68ba369
Binary files /dev/null and b/lagent/memory/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/memory/__pycache__/base_memory.cpython-310.pyc b/lagent/memory/__pycache__/base_memory.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..51e56cba79e2468eff9659c787cd3feae513e692
Binary files /dev/null and b/lagent/memory/__pycache__/base_memory.cpython-310.pyc differ
diff --git a/lagent/memory/__pycache__/manager.cpython-310.pyc b/lagent/memory/__pycache__/manager.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88af3b4f2c5a0994c86ed0eab2637ea59d8b4649
Binary files /dev/null and b/lagent/memory/__pycache__/manager.cpython-310.pyc differ
diff --git a/lagent/memory/base_memory.py b/lagent/memory/base_memory.py
new file mode 100644
index 0000000000000000000000000000000000000000..c60d9780715eed3a4d43c4b48ca175b44abef611
--- /dev/null
+++ b/lagent/memory/base_memory.py
@@ -0,0 +1,60 @@
+from typing import Callable, Dict, List, Optional, Union
+
+from lagent.schema import AgentMessage
+
+
+class Memory:
+
+ def __init__(self, recent_n=None) -> None:
+ self.memory: List[AgentMessage] = []
+ self.recent_n = recent_n
+
+ def get_memory(
+ self,
+ recent_n: Optional[int] = None,
+ filter_func: Optional[Callable[[int, dict], bool]] = None,
+ ) -> list:
+ recent_n = recent_n or self.recent_n
+ if recent_n is not None:
+ memory = self.memory[-recent_n:]
+ else:
+ memory = self.memory
+ if filter_func is not None:
+ memory = [m for i, m in enumerate(memory) if filter_func(i, m)]
+ return memory
+
+ def add(self, memories: Union[List[Dict], Dict, None]) -> None:
+ for memory in memories if isinstance(memories,
+ (list, tuple)) else [memories]:
+ if isinstance(memory, str):
+ memory = AgentMessage(sender='user', content=memory)
+ if isinstance(memory, AgentMessage):
+ self.memory.append(memory)
+
+ def delete(self, index: Union[List, int]) -> None:
+ if isinstance(index, int):
+ del self.memory[index]
+ else:
+ for i in index:
+ del self.memory[i]
+
+ def load(
+ self,
+ memories: Union[str, Dict, List],
+ overwrite: bool = True,
+ ) -> None:
+ if overwrite:
+ self.memory = []
+ if isinstance(memories, dict):
+ self.memory.append(AgentMessage(**memories))
+ elif isinstance(memories, list):
+ for m in memories:
+ self.memory.append(AgentMessage(**m))
+ else:
+ raise TypeError(f'{type(memories)} is not supported')
+
+ def save(self) -> List[dict]:
+ memory = []
+ for m in self.memory:
+ memory.append(m.model_dump())
+ return memory
diff --git a/lagent/memory/manager.py b/lagent/memory/manager.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d42ac9600dc86936aa8c41fb3d73d5c7110b9bb
--- /dev/null
+++ b/lagent/memory/manager.py
@@ -0,0 +1,29 @@
+from typing import Dict
+
+from ..utils import create_object
+from .base_memory import Memory
+
+
+class MemoryManager:
+
+ def __init__(self, cfg) -> None:
+ self.cfg = cfg
+ self.memory_map: Dict[str, Memory] = {}
+
+ def create_instance(self, session_id):
+ self.memory_map[session_id] = create_object(self.cfg)
+
+ def get_memory(self, session_id=0, **kwargs) -> list:
+ return self.memory_map[session_id].get_memory(**kwargs)
+
+ def add(self, memory, session_id=0, **kwargs) -> None:
+ if session_id not in self.memory_map:
+ self.create_instance(session_id)
+ self.memory_map[session_id].add(memory, **kwargs)
+
+ def get(self, session_id=0) -> Memory:
+ return self.memory_map.get(session_id, None)
+
+ def reset(self, session_id=0) -> None:
+ if session_id in self.memory_map:
+ del self.memory_map[session_id]
diff --git a/lagent/prompts/__init__.py b/lagent/prompts/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c7f76f4705a8f03a0a0983f8c33fdf8ee1409866
--- /dev/null
+++ b/lagent/prompts/__init__.py
@@ -0,0 +1,4 @@
+from .parsers import * # noqa
+from .prompt_template import PromptTemplate
+
+__all__ = ['PromptTemplate']
diff --git a/lagent/prompts/__pycache__/__init__.cpython-310.pyc b/lagent/prompts/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fd420311512e04cda385067680425fa876d51a79
Binary files /dev/null and b/lagent/prompts/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/prompts/__pycache__/prompt_template.cpython-310.pyc b/lagent/prompts/__pycache__/prompt_template.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..eb283fdbf8ae0eca1b6d91d980f0f04e7ca6a324
Binary files /dev/null and b/lagent/prompts/__pycache__/prompt_template.cpython-310.pyc differ
diff --git a/lagent/prompts/parsers/__init__.py b/lagent/prompts/parsers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d9b2ce25332d926663a1afc98f995d6ef0aba4ff
--- /dev/null
+++ b/lagent/prompts/parsers/__init__.py
@@ -0,0 +1,9 @@
+from .custom_parser import CustomFormatParser
+from .json_parser import JSONParser
+from .str_parser import StrParser
+from .tool_parser import InterpreterParser, MixedToolParser, PluginParser, ToolParser, ToolStatusCode
+
+__all__ = [
+ 'CustomFormatParser', 'JSONParser', 'StrParser', 'ToolParser',
+ 'InterpreterParser', 'PluginParser', 'MixedToolParser', 'ToolStatusCode'
+]
diff --git a/lagent/prompts/parsers/__pycache__/__init__.cpython-310.pyc b/lagent/prompts/parsers/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0cb854da200ccd3c8d15edf0945fcfeb267c4599
Binary files /dev/null and b/lagent/prompts/parsers/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/prompts/parsers/__pycache__/custom_parser.cpython-310.pyc b/lagent/prompts/parsers/__pycache__/custom_parser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b940de0d45bd9edd6ac4fee75640a2a72d215eca
Binary files /dev/null and b/lagent/prompts/parsers/__pycache__/custom_parser.cpython-310.pyc differ
diff --git a/lagent/prompts/parsers/__pycache__/json_parser.cpython-310.pyc b/lagent/prompts/parsers/__pycache__/json_parser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f161a388d9ba754b5860a4b69a46014059380589
Binary files /dev/null and b/lagent/prompts/parsers/__pycache__/json_parser.cpython-310.pyc differ
diff --git a/lagent/prompts/parsers/__pycache__/str_parser.cpython-310.pyc b/lagent/prompts/parsers/__pycache__/str_parser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a7b0b78a9a09627d9336dd58069d46bdc475612f
Binary files /dev/null and b/lagent/prompts/parsers/__pycache__/str_parser.cpython-310.pyc differ
diff --git a/lagent/prompts/parsers/__pycache__/tool_parser.cpython-310.pyc b/lagent/prompts/parsers/__pycache__/tool_parser.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..249d3104903bd578e57edb9e0cd12bc40ed6c543
Binary files /dev/null and b/lagent/prompts/parsers/__pycache__/tool_parser.cpython-310.pyc differ
diff --git a/lagent/prompts/parsers/custom_parser.py b/lagent/prompts/parsers/custom_parser.py
new file mode 100644
index 0000000000000000000000000000000000000000..68171522e6d452abc2694b2dfc727ff508e78e05
--- /dev/null
+++ b/lagent/prompts/parsers/custom_parser.py
@@ -0,0 +1,92 @@
+import re
+from typing import Any, Dict, Union
+
+from pydantic import BaseModel, ValidationError
+
+from lagent.prompts.parsers.str_parser import StrParser
+
+
+class CustomFormatParser(StrParser):
+
+ def _extract_fields_with_metadata(
+ self, model: BaseModel) -> Dict[str, Dict[str, Any]]:
+ fields_metadata = {}
+ for field_name, field in model.model_fields.items():
+ fields_metadata[field_name] = {
+ 'annotation': field.annotation,
+ 'default': field.default
+ if field.default is not None else '',
+ 'comment': field.description if field.description else ''
+ }
+ return fields_metadata
+
+ def format_to_string(self, format_model: BaseModel) -> str:
+ fields = self._extract_fields_with_metadata(format_model)
+ formatted_str = ''
+ for field_name, metadata in fields.items():
+ comment = metadata.get('comment', '')
+ field_annotation = metadata['annotation'].__name__ if metadata[
+ 'annotation'] is not None else 'Any'
+ if comment:
+ formatted_str += f'\n'
+ formatted_str += f'<{field_name} type="{field_annotation}">{metadata["default"] if metadata["default"] != "" else ""}{field_name}>\n'
+ return formatted_str
+
+ def parse_response(self, data: str) -> Union[dict, BaseModel]:
+ pattern = re.compile(r'()?\s*<(\w+)[^>]*>(.*?)\3>',
+ re.DOTALL)
+ matches = pattern.findall(data)
+
+ data_dict = {}
+ for _, comment_text, key, value in matches:
+ if comment_text:
+ self.fields[key]['comment'] = comment_text.strip()
+ data_dict[key] = value
+
+ model = self.default_format
+ if self.unknown_format and not self._is_valid_format(
+ data_dict, self.default_format):
+ model = self.unknown_format
+
+ return model.model_validate(data_dict)
+
+ def _is_valid_format(self, data: Dict, format_model: BaseModel) -> bool:
+ try:
+ format_model.model_validate(data)
+ return True
+ except ValidationError:
+ return False
+
+
+if __name__ == '__main__':
+ # Example usage
+ class DefaultFormat(BaseModel):
+ name: str
+ age: int
+
+ class UnknownFormat(BaseModel):
+ title: str
+ year: int
+
+ template = """如果了解该问题请按照一下格式回复
+ ```html
+ {format}
+ ```
+ 否则请回复
+ ```html
+ {unknown_format}
+ ```
+ """
+ parser = CustomFormatParser(
+ template, default_format=DefaultFormat, unknown_format=UnknownFormat)
+
+ # Example data
+ response = '''
+
+ John Doe
+
+ 30
+ '''
+
+ result = parser.parse_response(response)
+ print(result)
diff --git a/lagent/prompts/parsers/json_parser.py b/lagent/prompts/parsers/json_parser.py
new file mode 100644
index 0000000000000000000000000000000000000000..49f57215b184030e88d454294c6a2756589699de
--- /dev/null
+++ b/lagent/prompts/parsers/json_parser.py
@@ -0,0 +1,183 @@
+import json
+from typing import Any, Dict, List, Union, get_args, get_origin
+
+from pydantic import BaseModel, Field
+from pydantic_core import PydanticUndefined
+
+from lagent.prompts.parsers.str_parser import StrParser
+
+
+def get_field_type_name(field_type):
+ # 获取字段类型的起源类型(对于复合类型,如 List、Dict 等)
+ origin = get_origin(field_type)
+ if origin:
+ # 获取复合类型的所有参数
+ args = get_args(field_type)
+ # 重新构建类型名称,例如 List[str] 或 Optional[int]
+ args_str = ', '.join([get_field_type_name(arg) for arg in args])
+ return f'{origin.__name__}[{args_str}]'
+ # 如果不是复合类型,直接返回类型的名称
+ elif hasattr(field_type, '__name__'):
+ return field_type.__name__
+ else:
+ return str(field_type) # 处理一些特殊情况,如来自未知库的类型
+
+
+# class JSONParser(BaseParser):
+class JSONParser(StrParser):
+
+ def _extract_fields_with_metadata(
+ self, model: BaseModel) -> Dict[str, Dict[str, Any]]:
+ fields_metadata = {}
+ for field_name, field in model.model_fields.items():
+ fields_metadata[field_name] = {
+ 'annotation': field.annotation,
+ 'default': field.default
+ if field.default is not PydanticUndefined else '',
+ 'comment': field.description if field.description else ''
+ }
+
+ # 类型检查,以支持 BaseModel 的子类
+ origin = get_origin(field.annotation)
+ args = get_args(field.annotation)
+ if origin is None:
+ # 不是复合类型,直接检查是否为 BaseModel 的子类
+ if isinstance(field.annotation, type) and issubclass(
+ field.annotation, BaseModel):
+ fields_metadata[field_name][
+ 'fields'] = self._extract_fields_with_metadata(
+ field.annotation)
+ else:
+ # 是复合类型,检查其中是否有 BaseModel 的子类
+ for arg in args:
+ if isinstance(arg, type) and issubclass(arg, BaseModel):
+ fields_metadata[field_name][
+ 'fields'] = self._extract_fields_with_metadata(arg)
+ break
+ return fields_metadata
+
+ def _format_field(self,
+ field_name: str,
+ metadata: Dict[str, Any],
+ indent: int = 1) -> str:
+ comment = metadata.get('comment', '')
+ field_type = get_field_type_name(
+ metadata['annotation']
+ ) if metadata['annotation'] is not None else 'Any'
+ default_value = metadata['default']
+ indent_str = ' ' * indent
+ formatted_lines = []
+
+ if comment:
+ formatted_lines.append(f'{indent_str}// {comment}')
+
+ if 'fields' in metadata:
+ formatted_lines.append(f'{indent_str}"{field_name}": {{')
+ for sub_field_name, sub_metadata in metadata['fields'].items():
+ formatted_lines.append(
+ self._format_field(sub_field_name, sub_metadata,
+ indent + 1))
+ formatted_lines.append(f'{indent_str}}},')
+ else:
+ if default_value == '':
+ formatted_lines.append(
+ f'{indent_str}"{field_name}": "{field_type}", // required'
+ )
+ else:
+ formatted_lines.append(
+ f'{indent_str}"{field_name}": "{field_type}", // default: {default_value}'
+ )
+
+ return '\n'.join(formatted_lines)
+
+ def format_to_string(self, format_model) -> str:
+ fields = self._extract_fields_with_metadata(format_model)
+ formatted_lines = []
+ for field_name, metadata in fields.items():
+ formatted_lines.append(self._format_field(field_name, metadata))
+
+ # Remove the trailing comma from the last line
+ if formatted_lines and formatted_lines[-1].endswith(','):
+ formatted_lines[-1] = formatted_lines[-1].rstrip(',')
+
+ return '{\n' + '\n'.join(formatted_lines) + '\n}'
+
+ def parse_response(self, data: str) -> Union[dict, BaseModel]:
+ # Remove comments
+ data_no_comments = '\n'.join(
+ line for line in data.split('\n')
+ if not line.strip().startswith('//'))
+ try:
+ data_dict = json.loads(data_no_comments)
+ parsed_data = {}
+
+ for field_name, value in self.format_field.items():
+ if self._is_valid_format(data_dict, value):
+ model = value
+ break
+
+ self.fields = self._extract_fields_with_metadata(model)
+
+ for field_name, value in data_dict.items():
+ if field_name in self.fields:
+ metadata = self.fields[field_name]
+ if value in [
+ 'str', 'int', 'float', 'bool', 'list', 'dict'
+ ]:
+ if metadata['default'] == '':
+ raise ValueError(
+ f"Field '{field_name}' is required but not provided"
+ )
+ parsed_data[field_name] = metadata['default']
+ else:
+ parsed_data[field_name] = value
+
+ return model.model_validate(parsed_data).dict()
+ except json.JSONDecodeError:
+ raise ValueError('Input string is not a valid JSON.')
+
+ def _is_valid_format(self, data: dict, format_model: BaseModel) -> bool:
+ try:
+ format_model.model_validate(data)
+ return True
+ except Exception:
+ return False
+
+
+if __name__ == '__main__':
+
+ # Example usage
+ class DefaultFormat(BaseModel):
+ name: List[str] = Field(description='Name of the person')
+ age: int = Field(description='Age of the person')
+
+ class UnknownFormat(BaseModel):
+ title: str
+ year: int
+
+ TEMPLATE = """如果了解该问题请按照一下格式回复
+ ```json
+ {format}
+ ```
+ 否则请回复
+ ```json
+ {unknown_format}
+ ```
+ """
+
+ parser = JSONParser(
+ template=TEMPLATE,
+ default_format=DefaultFormat,
+ unknown_format=UnknownFormat,
+ )
+
+ # Example data
+ data = '''
+ {
+ "name": ["John Doe"],
+ "age": 30
+ }
+ '''
+ print(parser.format())
+ result = parser.parse_response(data)
+ print(result)
diff --git a/lagent/prompts/parsers/str_parser.py b/lagent/prompts/parsers/str_parser.py
new file mode 100644
index 0000000000000000000000000000000000000000..6af7aa6ecafacf8ff13ad0f3f2cbcdd41d65b735
--- /dev/null
+++ b/lagent/prompts/parsers/str_parser.py
@@ -0,0 +1,28 @@
+from typing import Any
+
+
+class StrParser:
+
+ def __init__(
+ self,
+ template: str = '',
+ **format_field,
+ ):
+ self.template = template
+ self.format_field = format_field
+
+ def format_instruction(self) -> Any:
+ format_data = {
+ key: self.format_to_string(value)
+ for key, value in self.format_field.items()
+ }
+ return self.template.format(**format_data)
+
+ def format_to_string(self, format_model: Any) -> str:
+ return format_model
+
+ def format_response(self, parsed: dict) -> str:
+ raise NotImplementedError
+
+ def parse_response(self, data: str) -> str:
+ return data
diff --git a/lagent/prompts/parsers/tool_parser.py b/lagent/prompts/parsers/tool_parser.py
new file mode 100644
index 0000000000000000000000000000000000000000..534331275b71d1b443aba81bec710eae0deba88d
--- /dev/null
+++ b/lagent/prompts/parsers/tool_parser.py
@@ -0,0 +1,143 @@
+import json
+from enum import IntEnum
+
+# import re
+from typing import Any, Callable, List, Optional
+
+from lagent.prompts.parsers import StrParser
+from lagent.utils import create_object, load_class_from_string
+
+
+def default_plugin_validate(plugin: str):
+ plugin = plugin.strip()
+ if not (plugin.startswith('{') and plugin.endswith("}")):
+ raise json.decoder.JSONDecodeError
+ return json.loads(plugin)
+
+
+class ToolStatusCode(IntEnum):
+ NO_TOOL = 0
+ VALID_TOOL = 1
+ PARSING_ERROR = -1
+
+
+class ToolParser(StrParser):
+
+ def __init__(self,
+ tool_type: str,
+ template: str = '',
+ begin: str = '\n',
+ end: str = '\n',
+ validate: Callable[[str], Any] = None,
+ **kwargs):
+ super().__init__(template, begin=begin, end=end, **kwargs)
+ self.template = template
+ self.tool_type = tool_type
+ # self.pattern = re.compile(
+ # '(.*?){}(.*)({})?'.format(re.escape(begin), re.escape(end)),
+ # re.DOTALL)
+ self.validate = load_class_from_string(validate) if isinstance(
+ validate, str) else validate
+
+ def parse_response(self, data: str) -> dict:
+ if self.format_field['begin'] not in data:
+ return dict(
+ tool_type=None,
+ thought=data,
+ action=None,
+ status=ToolStatusCode.NO_TOOL)
+ thought, action, *_ = data.split(self.format_field["begin"])
+ action = action.split(self.format_field['end'])[0]
+ status = ToolStatusCode.VALID_TOOL
+ if self.validate:
+ try:
+ action = self.validate(action)
+ except Exception:
+ status = ToolStatusCode.PARSING_ERROR
+ return dict(
+ tool_type=self.tool_type,
+ thought=thought,
+ action=action,
+ status=status)
+
+ def format_response(self, parsed: dict) -> str:
+ if parsed['action'] is None:
+ return parsed['thought']
+ assert parsed['tool_type'] == self.tool_type
+ if isinstance(parsed['action'], dict):
+ action = json.dumps(parsed['action'], ensure_ascii=False)
+ else:
+ action = str(parsed['action'])
+ return parsed['thought'] + self.format_field[
+ 'begin'] + action + self.format_field['end']
+
+
+class InterpreterParser(ToolParser):
+
+ def __init__(self,
+ tool_type: str = 'interpreter',
+ template: str = '',
+ begin: str = '<|action_start|><|interpreter|>\n',
+ end: str = '<|action_end|>\n',
+ validate: Callable[[str], Any] = None,
+ **kwargs):
+ super().__init__(tool_type, template, begin, end, validate, **kwargs)
+
+
+class PluginParser(ToolParser):
+
+ def __init__(self,
+ tool_type: str = 'plugin',
+ template: str = '',
+ begin: str = '<|action_start|><|plugin|>\n',
+ end: str = '<|action_end|>\n',
+ validate: Callable[[str], Any] = default_plugin_validate,
+ **kwargs):
+ super().__init__(tool_type, template, begin, end, validate, **kwargs)
+
+
+class MixedToolParser(StrParser):
+
+ def __init__(self,
+ tool_type: Optional[str] = None,
+ template='',
+ parsers: List[ToolParser] = None,
+ **format_field):
+ self.parsers = {}
+ self.tool_type = tool_type
+ for parser in parsers or []:
+ parser = create_object(parser)
+ self.parsers[parser.tool_type] = parser
+ super().__init__(template, **format_field)
+
+ def format_instruction(self) -> List[dict]:
+ inst = []
+ content = super().format_instruction()
+ if content.strip():
+ msg = dict(role='system', content=content)
+ if self.tool_type:
+ msg['name'] = self.tool_type
+ inst.append(msg)
+ for name, parser in self.parsers.items():
+ content = parser.format_instruction()
+ if content.strip():
+ inst.append(dict(role='system', content=content, name=name))
+ return inst
+
+ def parse_response(self, data: str) -> dict:
+ res = dict(
+ tool_type=None,
+ thought=data,
+ action=None,
+ status=ToolStatusCode.NO_TOOL)
+ for name, parser in self.parsers.items():
+ res = parser.parse_response(data)
+ if res['tool_type'] == name:
+ break
+ return res
+
+ def format_response(self, parsed: dict) -> str:
+ if parsed['action'] is None:
+ return parsed['thought']
+ assert parsed['tool_type'] in self.parsers
+ return self.parsers[parsed['tool_type']].format_response(parsed)
diff --git a/lagent/prompts/prompt_template.py b/lagent/prompts/prompt_template.py
new file mode 100644
index 0000000000000000000000000000000000000000..15facf92cbcdf4f0963770587f68cbdc99aac7db
--- /dev/null
+++ b/lagent/prompts/prompt_template.py
@@ -0,0 +1,188 @@
+import re
+from dataclasses import asdict, is_dataclass
+from typing import Any, Dict, Optional, Union
+
+import jinja2
+from pydantic import BaseModel
+
+
+class PromptTemplate:
+ """prompt templates.
+
+ Args:
+ template (str): The template string.
+ variables (Optional[Union[Dict[str, str], BaseModel, Any]]): Variables for the template.
+ format_type (str): The format type of the template ('json' or 'jinja').
+
+ """
+
+ def __init__(self, template: str, format_type: str = 'json') -> None:
+ self.template = template
+ self.format_type = format_type
+
+ def _convert_to_dict(
+ self, variables: Optional[Union[Dict[str, str], BaseModel, Any]]
+ ) -> Dict[str, str]:
+ """
+ Convert variables to a dictionary.
+
+ Args:
+ variables (Optional[Union[Dict[str, str], BaseModel, Any]]):
+ Variables to convert.
+
+ Returns:
+ Dict[str, str]: The converted dictionary.
+
+ Raises:
+ ValueError: If the variables type is unsupported.
+ """
+ if variables is None:
+ return {}
+ if isinstance(variables, BaseModel):
+ return variables.dict()
+ if is_dataclass(variables):
+ return asdict(variables)
+ if isinstance(variables, dict):
+ return variables
+ raise ValueError(
+ 'Unsupported variables type. Must be a dict, BaseModel, or '
+ 'dataclass.')
+
+ def parse_template(self, template: str) -> Dict[str, str]:
+ """
+ Extract variables from the template.
+
+ Args:
+ template (str): The template string.
+
+ Returns:
+ Dict[str, str]: A dictionary of variables with None values.
+ """
+ if self.format_type == 'jinja':
+ variables = re.findall(r'\{\{(.*?)\}\}', template)
+
+ elif self.format_type == 'json':
+ variables = re.findall(r'\{(.*?)\}', template)
+ variables = [var for var in variables if '{' not in var]
+ else:
+ variables = []
+ return {var.strip(): None for var in variables}
+
+ def format_json(self, template: str, variables: Dict[str, str]) -> str:
+ """
+ Format the JSON template.
+
+ Args:
+ template (str): The JSON template string.
+ variables (Dict[str, str]): The variables to fill in the template.
+
+ Returns:
+ str: The formatted JSON string.
+
+ Raises:
+ ValueError: If the template is not a valid JSON.
+ """
+ try:
+ return template.format(**variables)
+ except KeyError as e:
+ raise ValueError('Invalid JSON template') from e
+
+ def format_jinja(self, template: str, variables: Dict[str, str]) -> str:
+ """
+ Format the Jinja template.
+
+ Args:
+ template (str): The Jinja template string.
+ variables (Dict[str, str]): The variables to fill in the template.
+
+ Returns:
+ str: The formatted Jinja string.
+
+ Raises:
+ ValueError: If the template is not a valid Jinja template.
+ """
+ try:
+ jinja_template = jinja2.Template(template)
+ return jinja_template.render(variables)
+ except jinja2.TemplateError as e:
+ raise ValueError('Invalid Jinja template') from e
+
+ def _update_variables_with_info(self) -> Dict[str, str]:
+ """
+ Update variables dictionary with action_info and agents_info.
+
+ Returns:
+ Dict[str, str]: The updated variables dictionary.
+ """
+ variables = self.variables.copy()
+ if 'action_info' not in variables and self.actions_info:
+ variables['action_info'] = self.actions_info
+ if 'agents_info' not in variables and self.agents_info:
+ variables['agents_info'] = self.agents_info
+ return variables
+
+ def _check_variables_match(self, parsed_variables: Dict[str, str],
+ variables: Dict[str, str]) -> None:
+ """
+ Check if all keys in variables are present in parsed_variables.
+
+ Args:
+ parsed_variables (Dict[str, str]): The parsed variables from
+ the template.
+ variables (Dict[str, str]): The variables to check.
+
+ Raises:
+ ValueError: If any key in variables is not present in
+ parsed_variables.
+ """
+ if not all(key in parsed_variables for key in variables.keys()):
+ raise ValueError(
+ 'Variables keys do not match the template variables')
+
+ def format(
+ self,
+ **kwargs: Optional[Union[Dict[str, str], BaseModel, Any]],
+ ) -> Any:
+ self.variables = kwargs
+ return str(self)
+
+ def __str__(self) -> Any:
+ """
+ Call the template formatting based on format_type.
+
+ Returns:
+ Any: The formatted template.
+
+ Raises:
+ ValueError: If the format_type is unsupported.
+ """
+ parsed_variables = self.parse_template(self.template)
+ updated_variables = self._update_variables_with_info()
+ self._check_variables_match(parsed_variables, updated_variables)
+
+ if self.format_type == 'json':
+ return self.format_json(self.template, updated_variables)
+ elif self.format_type == 'jinja':
+ return self.format_jinja(self.template, updated_variables)
+ else:
+ raise ValueError('Unsupported format type')
+
+ @property
+ def actions_info(self) -> Optional[Dict[str, Any]]:
+ """Get the action information."""
+ return getattr(self, '_action_info', None)
+
+ @actions_info.setter
+ def actions_info(self, value: Dict[str, Any]) -> None:
+ """Set the action information."""
+ self._action_info = value
+
+ @property
+ def agents_info(self) -> Optional[Dict[str, Any]]:
+ """Get the agent information."""
+ return getattr(self, '_agents_info', None)
+
+ @agents_info.setter
+ def agents_info(self, value: Dict[str, Any]) -> None:
+ """Set the agent information."""
+ self._agents_info = value
diff --git a/lagent/schema.py b/lagent/schema.py
new file mode 100644
index 0000000000000000000000000000000000000000..668846fbe563ddc7cb26b2d77e6a88258cb29962
--- /dev/null
+++ b/lagent/schema.py
@@ -0,0 +1,97 @@
+from dataclasses import asdict, dataclass
+from enum import IntEnum
+from typing import Any, Dict, List, Optional, Union
+
+from pydantic import BaseModel
+
+
+def enum_dict_factory(inputs):
+ inputs = [(i[0], i[-1].value) if isinstance(i[-1], IntEnum) else i
+ for i in inputs]
+ return dict(inputs)
+
+
+def dataclass2dict(data):
+ return asdict(data, dict_factory=enum_dict_factory)
+
+
+@dataclass
+class FunctionCall:
+ name: str
+ parameters: Union[Dict, str]
+
+
+class ActionStatusCode(IntEnum):
+ ING = 1
+ SUCCESS = 0
+ HTTP_ERROR = -1000 # http error
+ ARGS_ERROR = -1001 # parameter error
+ API_ERROR = -1002 # unknown error
+
+
+class ActionValidCode(IntEnum):
+ FINISH = 1
+ OPEN = 0
+ CLOSED = -1
+ INVALID = -2
+ ABSENT = -3 # NO ACTION
+
+
+@dataclass
+class ActionReturn:
+ args: Optional[dict] = None
+ url: Optional[str] = None
+ type: Optional[str] = None
+ result: Optional[List[dict]] = None
+ errmsg: Optional[str] = None
+ state: Union[ActionStatusCode, int] = ActionStatusCode.SUCCESS
+ thought: Optional[str] = None
+ valid: Optional[ActionValidCode] = ActionValidCode.OPEN
+
+ def format_result(self) -> str:
+ """Concatenate items in result."""
+ result = []
+ for item in self.result or []:
+ if item['type'] == 'text':
+ result.append(item['content'])
+ else:
+ result.append(f"[{item['type']}]({item['content']})")
+ result = '\n'.join(result)
+ return result
+
+
+# need to integrate int, so asdict can convert AgentStatusCode to int
+class ModelStatusCode(IntEnum):
+ END = 0 # end of streaming
+ STREAM_ING = 1 # response is in streaming
+ SERVER_ERR = -1 # triton server's error
+ SESSION_CLOSED = -2 # session has been closed
+ SESSION_OUT_OF_LIMIT = -3 # request length out of limit
+ SESSION_INVALID_ARG = -4 # invalid argument
+ SESSION_READY = 2 # session is ready for inference
+
+
+class AgentStatusCode(IntEnum):
+ END = 0 # end of streaming
+ STREAM_ING = 1 # response is in streaming
+ SERVER_ERR = -1 # triton server's error
+ SESSION_CLOSED = -2 # session has been closed
+ SESSION_OUT_OF_LIMIT = -3 # request length out of limit
+ SESSION_INVALID_ARG = -4 # invalid argument
+ SESSION_READY = 2 # session is ready for inference
+ PLUGIN_START = 3 # start tool
+ PLUGIN_END = 4 # finish tool
+ PLUGIN_RETURN = 5 # finish tool
+ CODING = 6 # start python
+ CODE_END = 7 # end python
+ CODE_RETURN = 8 # python return
+
+
+class AgentMessage(BaseModel):
+ content: Any
+ sender: str = 'user'
+ formatted: Optional[Any] = None
+ extra_info: Optional[Any] = None
+ type: Optional[str] = None
+ receiver: Optional[str] = None
+ stream_state: Union[ModelStatusCode, AgentStatusCode] = AgentStatusCode.END
diff --git a/lagent/utils/__init__.py b/lagent/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a0ac54935d812f97f1a99ea168f106cf708b6e64
--- /dev/null
+++ b/lagent/utils/__init__.py
@@ -0,0 +1,14 @@
+from .package import is_module_exist
+from .util import (
+ GeneratorWithReturn,
+ async_as_completed,
+ create_object,
+ filter_suffix,
+ get_logger,
+ load_class_from_string,
+)
+
+__all__ = [
+ 'is_module_exist', 'filter_suffix', 'create_object', 'get_logger',
+ 'load_class_from_string', 'async_as_completed', 'GeneratorWithReturn'
+]
diff --git a/lagent/utils/__pycache__/__init__.cpython-310.pyc b/lagent/utils/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ee06c7541a0a13e6c6ff178501f02f52ed21ed99
Binary files /dev/null and b/lagent/utils/__pycache__/__init__.cpython-310.pyc differ
diff --git a/lagent/utils/__pycache__/package.cpython-310.pyc b/lagent/utils/__pycache__/package.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..77667be7d8b4dec417787511d228863f2c4a195a
Binary files /dev/null and b/lagent/utils/__pycache__/package.cpython-310.pyc differ
diff --git a/lagent/utils/__pycache__/util.cpython-310.pyc b/lagent/utils/__pycache__/util.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3f4e151efc707a72fe0cc0a8b1e89eeb7a476aa
Binary files /dev/null and b/lagent/utils/__pycache__/util.cpython-310.pyc differ
diff --git a/lagent/utils/gen_key.py b/lagent/utils/gen_key.py
new file mode 100644
index 0000000000000000000000000000000000000000..95642820fb019a26dbcb5cff5a6834220ad390e8
--- /dev/null
+++ b/lagent/utils/gen_key.py
@@ -0,0 +1,32 @@
+# api token 生成代码
+import time
+import jwt
+import os
+
+minutes = 525600
+
+
+def encode_jwt_token(ak, sk):
+ headers = {
+ "alg": "HS256",
+ "typ": "JWT"
+ }
+ payload = {
+ "iss": ak,
+ "exp": int(time.time()) + minutes, # 填写您期望的有效时间,此处示例代表当前时间+一年
+ "nbf": int(time.time()) - 5 # 填写您期望的生效时间,此处示例代表当前时间-5秒
+ }
+ token = jwt.encode(payload, sk, headers=headers)
+ return token
+
+
+def auto_gen_jwt_token(ak, sk):
+ token = encode_jwt_token(ak, sk)
+ return token
+
+
+if __name__ == '__main__':
+ ak = os.getenv('NOVA_AK')
+ sk = os.getenv('NOVA_SK')
+ token = encode_jwt_token(ak, sk)
+ print(token)
diff --git a/lagent/utils/package.py b/lagent/utils/package.py
new file mode 100644
index 0000000000000000000000000000000000000000..874fc8370fefab31e40084f4b389bafa4ac1ca49
--- /dev/null
+++ b/lagent/utils/package.py
@@ -0,0 +1,9 @@
+from importlib.util import find_spec
+
+
+def is_module_exist(module_name):
+ spec = find_spec(module_name)
+ if spec is None:
+ return False
+ else:
+ return True
diff --git a/lagent/utils/util.py b/lagent/utils/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..a40482b53c1c94a1a6f65d64a80f5282b29bd4c2
--- /dev/null
+++ b/lagent/utils/util.py
@@ -0,0 +1,139 @@
+import asyncio
+import importlib
+import inspect
+import logging
+import os
+import os.path as osp
+import sys
+import time
+from functools import partial
+from logging.handlers import RotatingFileHandler
+from typing import Any, Dict, Generator, Iterable, List, Optional, Union
+
+
+def load_class_from_string(class_path: str, path=None):
+ path_in_sys = False
+ if path:
+ if path not in sys.path:
+ path_in_sys = True
+ sys.path.insert(0, path)
+
+ try:
+ module_name, class_name = class_path.rsplit('.', 1)
+ module = importlib.import_module(module_name)
+ cls = getattr(module, class_name)
+ return cls
+ finally:
+ if path and path_in_sys:
+ sys.path.remove(path)
+
+
+def create_object(config: Union[Dict, Any] = None):
+ """Create an instance based on the configuration where 'type' is a
+ preserved key to indicate the class (path). When accepting non-dictionary
+ input, the function degenerates to an identity.
+ """
+ if config is None or not isinstance(config, dict):
+ return config
+ assert isinstance(config, dict) and 'type' in config
+
+ config = config.copy()
+ obj_type = config.pop('type')
+ if isinstance(obj_type, str):
+ obj_type = load_class_from_string(obj_type)
+ if inspect.isclass(obj_type):
+ obj = obj_type(**config)
+ else:
+ assert callable(obj_type)
+ obj = partial(obj_type, **config)
+ return obj
+
+
+async def async_as_completed(futures: Iterable[asyncio.Future]):
+ """A asynchronous wrapper for `asyncio.as_completed`"""
+ loop = asyncio.get_event_loop()
+ wrappers = []
+ for fut in futures:
+ assert isinstance(fut, asyncio.Future)
+ wrapper = loop.create_future()
+ fut.add_done_callback(wrapper.set_result)
+ wrappers.append(wrapper)
+ for next_completed in asyncio.as_completed(wrappers):
+ yield await next_completed
+
+
+def filter_suffix(response: Union[str, List[str]],
+ suffixes: Optional[List[str]] = None) -> str:
+ """Filter response with suffixes.
+
+ Args:
+ response (Union[str, List[str]]): generated responses by LLMs.
+ suffixes (str): a list of suffixes to be deleted.
+
+ Return:
+ str: a clean response.
+ """
+ if suffixes is None:
+ return response
+ batched = True
+ if isinstance(response, str):
+ response = [response]
+ batched = False
+ processed = []
+ for resp in response:
+ for item in suffixes:
+ # if response.endswith(item):
+ # response = response[:len(response) - len(item)]
+ if item in resp:
+ resp = resp.split(item)[0]
+ processed.append(resp)
+ if not batched:
+ return processed[0]
+ return processed
+
+
+def get_logger(
+ name: str = 'lagent',
+ level: str = 'debug',
+ fmt:
+ str = '%(asctime)s %(levelname)8s %(filename)20s %(lineno)4s - %(message)s',
+ add_file_handler: bool = False,
+ log_dir: str = 'log',
+ log_file: str = time.strftime('%Y-%m-%d.log', time.localtime()),
+ max_bytes: int = 5 * 1024 * 1024,
+ backup_count: int = 3,
+):
+ logger = logging.getLogger(name)
+ logger.propagate = False
+ logger.setLevel(getattr(logging, level.upper(), logging.DEBUG))
+
+ formatter = logging.Formatter(fmt)
+ console_handler = logging.StreamHandler()
+ console_handler.setFormatter(formatter)
+ logger.addHandler(console_handler)
+
+ if add_file_handler:
+ if not osp.exists(log_dir):
+ os.makedirs(log_dir)
+ log_file_path = osp.join(log_dir, log_file)
+ file_handler = RotatingFileHandler(
+ log_file_path,
+ maxBytes=max_bytes,
+ backupCount=backup_count,
+ encoding='utf-8')
+ file_handler.setFormatter(formatter)
+ logger.addHandler(file_handler)
+
+ return logger
+
+
+class GeneratorWithReturn:
+ """Generator wrapper to capture the return value."""
+
+ def __init__(self, generator: Generator):
+ self.generator = generator
+ self.ret = None
+
+ def __iter__(self):
+ self.ret = yield from self.generator
+ return self.ret
diff --git a/lagent/version.py b/lagent/version.py
new file mode 100644
index 0000000000000000000000000000000000000000..d9c59dd319e7e1be2581dc9330a2ed8120073173
--- /dev/null
+++ b/lagent/version.py
@@ -0,0 +1,27 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+__version__ = '0.5.0rc1'
+
+
+def parse_version_info(version_str):
+ """Parse the version information.
+
+ Args:
+ version_str (str): version string like '0.1.0'.
+
+ Returns:
+ tuple: version information contains major, minor, micro version.
+ """
+ version_info = []
+ for x in version_str.split('.'):
+ if x.isdigit():
+ version_info.append(int(x))
+ elif x.find('rc') != -1:
+ patch_version = x.split('rc')
+ version_info.append(int(patch_version[0]))
+ version_info.append(f'rc{patch_version[1]}')
+ return tuple(version_info)
+
+
+version_info = parse_version_info(__version__)
+
+__all__ = ['__version__', 'version_info', 'parse_version_info']
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..751e92e264a65ec7166b4c28ae05d793af0c4fdf
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,2 @@
+-r requirements/optional.txt
+-r requirements/runtime.txt
diff --git a/requirements/docs.txt b/requirements/docs.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0df2bf7f384b8f5286c480dadbc25bc78debdeca
--- /dev/null
+++ b/requirements/docs.txt
@@ -0,0 +1,13 @@
+astroid<3.0.0
+docutils==0.18.1
+markdown>=3.4.0
+myst-nb
+# -e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
+# sphinx==4.0.2
+sphinx==6.1.0
+sphinx-autoapi
+sphinx-rtd-theme==1.3.0
+sphinx-tabs
+sphinx_copybutton
+sphinx_markdown_tables>=0.0.16
+tabulate
diff --git a/requirements/optional.txt b/requirements/optional.txt
new file mode 100644
index 0000000000000000000000000000000000000000..75645dbe7bcd072298adc6660b7a139857171045
--- /dev/null
+++ b/requirements/optional.txt
@@ -0,0 +1,8 @@
+google-search-results
+lmdeploy>=0.2.5
+pillow
+python-pptx
+timeout_decorator
+torch
+transformers>=4.34,<=4.40
+vllm>=0.3.3
diff --git a/requirements/runtime.txt b/requirements/runtime.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6fcd4ea1c8a27b67417be5c9bf4079340341c437
--- /dev/null
+++ b/requirements/runtime.txt
@@ -0,0 +1,20 @@
+aiohttp
+arxiv
+asyncache
+asyncer
+distro
+duckduckgo_search==5.3.1b1
+filelock
+func_timeout
+griffe<1.0
+json5
+jsonschema
+jupyter==1.0.0
+jupyter_client==8.6.2
+jupyter_core==5.7.2
+pydantic==2.6.4
+requests
+termcolor
+tiktoken
+timeout-decorator
+typing-extensions
diff --git a/setup.cfg b/setup.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..ec9ff67985b153d031817c30ad378e92e9901431
--- /dev/null
+++ b/setup.cfg
@@ -0,0 +1,24 @@
+[isort]
+line_length = 119
+multi_line_output = 0
+extra_standard_library = setuptools
+known_first_party = mmdet
+known_third_party = PIL,asynctest,cityscapesscripts,cv2,gather_models,matplotlib,mmcv,mmengine,numpy,onnx,onnxruntime,pycocotools,parameterized,pytest,pytorch_sphinx_theme,requests,scipy,seaborn,six,terminaltables,torch,ts,yaml
+no_lines_before = STDLIB,LOCALFOLDER
+default_section = THIRDPARTY
+
+[yapf]
+BASED_ON_STYLE = pep8
+BLANK_LINE_BEFORE_NESTED_CLASS_OR_DEF = true
+SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN = true
+
+# ignore-words-list needs to be lowercase format. For example, if we want to
+# ignore word "BA", then we need to append "ba" to ignore-words-list rather
+# than "BA"
+[codespell]
+skip = *.ipynb
+quiet-level = 3
+ignore-words-list = patten,nd,ty,mot,hist,formating,winn,gool,datas,wan,confids,TOOD,tood,ba,warmup,nam,DOTA,dota,conveyer,astroid
+
+[flake8]
+max-line-length = 119
diff --git a/setup.py b/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..699165da81c3f689d4364335fb39f0d88168411c
--- /dev/null
+++ b/setup.py
@@ -0,0 +1,108 @@
+from pathlib import Path
+from setuptools import find_packages, setup
+
+
+def get_version():
+ version_file = 'lagent/version.py'
+ with open(version_file, encoding='utf-8') as f:
+ exec(compile(f.read(), version_file, 'exec'))
+ return locals()['__version__']
+
+
+def parse_requirements(fname='requirements.txt', with_version=True):
+ """Parse the package dependencies listed in a requirements file but strip
+ specific version information.
+
+ Args:
+ fname (str): Path to requirements file.
+ with_version (bool, default=False): If True, include version specs.
+ Returns:
+ info (list[str]): List of requirements items.
+ CommandLine:
+ python -c "import setup; print(setup.parse_requirements())"
+ """
+ import re
+ import sys
+ from os.path import exists
+
+ require_fpath = fname
+
+ def parse_line(line):
+ """Parse information from a line in a requirements text file."""
+ if line.startswith('-r '):
+ # Allow specifying requirements in other files
+ target = line.split(' ')[1]
+ for info in parse_require_file(target):
+ yield info
+ else:
+ info = {'line': line}
+ if line.startswith('-e '):
+ info['package'] = line.split('#egg=')[1]
+ else:
+ # Remove versioning from the package
+ pat = '(' + '|'.join(['>=', '==', '>']) + ')'
+ parts = re.split(pat, line, maxsplit=1)
+ parts = [p.strip() for p in parts]
+
+ info['package'] = parts[0]
+ if len(parts) > 1:
+ op, rest = parts[1:]
+ if ';' in rest:
+ # Handle platform specific dependencies
+ # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
+ version, platform_deps = map(str.strip,
+ rest.split(';'))
+ info['platform_deps'] = platform_deps
+ else:
+ version = rest # NOQA
+ info['version'] = (op, version)
+ yield info
+
+ def parse_require_file(fpath):
+ with open(fpath) as f:
+ for line in f.readlines():
+ line = line.strip()
+ if line and not line.startswith('#'):
+ yield from parse_line(line)
+
+ def gen_packages_items():
+ if exists(require_fpath):
+ for info in parse_require_file(require_fpath):
+ parts = [info['package']]
+ if with_version and 'version' in info:
+ parts.extend(info['version'])
+ if not sys.version.startswith('3.4'):
+ # apparently package_deps are broken in 3.4
+ platform_deps = info.get('platform_deps')
+ if platform_deps is not None:
+ parts.append(';' + platform_deps)
+ item = ''.join(parts)
+ yield item
+
+ packages = list(gen_packages_items())
+ return packages
+
+
+if __name__ == '__main__':
+ with Path(Path(__file__).parent,
+ 'README.md').open(encoding='utf-8') as file:
+ long_description = file.read()
+
+ setup(
+ name='lagent',
+ packages=find_packages(),
+ include_package_data=True,
+ version=get_version(),
+ license='Apache 2.0',
+ description='A lightweight framework for building LLM-based agents',
+ long_description=long_description,
+ long_description_content_type='text/markdown',
+ data_files=[('.', ['README.md'])],
+ keywords=['artificial general intelligence', 'agent', 'agi', 'llm'],
+ url='https://github.com/InternLM/lagent',
+ install_requires=parse_requirements('requirements/runtime.txt'),
+ extras_require={
+ 'all': parse_requirements('requirements.txt'),
+ 'optional': parse_requirements('requirements/optional.txt'),
+ },
+ )
diff --git a/tests/data/search.json b/tests/data/search.json
new file mode 100644
index 0000000000000000000000000000000000000000..0aaa790f305b32c291183c82edea2632571ed438
--- /dev/null
+++ b/tests/data/search.json
@@ -0,0 +1,144 @@
+{
+ "searchParameters": {
+ "q": "What is the capital of China?",
+ "gl": "us",
+ "hl": "en",
+ "num": 10,
+ "type": "search"
+ },
+ "answerBox": {
+ "title": "China / Capital",
+ "answer": "Beijing"
+ },
+ "organic": [
+ {
+ "title": "Beijing - Wikipedia",
+ "link": "https://en.wikipedia.org/wiki/Beijing",
+ "snippet": "With over 21 million residents, Beijing is the world's most populous national capital city as well as China's second largest city after Shanghai.",
+ "sitelinks": [
+ {
+ "title": "Etymology",
+ "link": "https://en.wikipedia.org/wiki/Beijing#Etymology"
+ },
+ {
+ "title": "History",
+ "link": "https://en.wikipedia.org/wiki/Beijing#History"
+ },
+ {
+ "title": "Geography",
+ "link": "https://en.wikipedia.org/wiki/Beijing#Geography"
+ }
+ ],
+ "position": 1
+ },
+ {
+ "title": "What is the Capital of China? - Mappr",
+ "link": "https://www.mappr.co/capital-cities/china/",
+ "snippet": "Beijing, also known as Peking, is the capital of China and one of the most populous cities in the world. It is the country's political, educational, ...",
+ "position": 2
+ },
+ {
+ "title": "Google Map of the City of Beijing, capital of P.R. China - Nations Online Project",
+ "link": "https://www.nationsonline.org/oneworld/map/google_map_Beijing.htm",
+ "snippet": "Google Earth: Searchable map/satellite view of Beijing, capital city of P.R. China. City Coordinates: 39°54′50″N 116°23′30″E, Bookmark/share this page ...",
+ "position": 3
+ },
+ {
+ "title": "Capital City of China - CountryReports.org",
+ "link": "https://www.countryreports.org/country/china/capital-city.htm",
+ "snippet": "Capital City, Beijing ; Capital location, 39 55 N, 116 23 E ; Capital - history, (Peking) Founded about 3,000 years ago on the site of a former Chinese capital, ...",
+ "position": 4
+ },
+ {
+ "title": "Capital of China - Beijing",
+ "link": "https://www.chinahighlights.com/beijing/capital-of-china.htm",
+ "snippet": "In Chinese, Beijing means 'Northern Capital'. Bei means 'north' and jing means 'capital'. In the history of China, Beijing's name has changed ...",
+ "date": "Dec 15, 2022",
+ "position": 5
+ },
+ {
+ "title": "Beijing is the capital of the People's Republic of China. It is the world's most populous capital city, with over 21 million residents within an... | By DL&D Consult | Facebook",
+ "link": "https://facebook.com/dldconsult/videos/beijing-capital-city-of-china/373001500555301/",
+ "snippet": "Beijing is an important world capital and global power ...",
+ "date": "Oct 19, 2020",
+ "attributes": {
+ "Duration": "2:58",
+ "Posted": "Oct 19, 2020"
+ },
+ "imageUrl": "https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcQExx68yUr7xP_1wcRapEKlT5bxe4ptMa6WaLnwXdVAtAdloa7WeTIvCoJp",
+ "position": 6
+ },
+ {
+ "title": "What is the Capital of China? - WorldAtlas",
+ "link": "https://www.worldatlas.com/articles/what-is-the-capital-of-china.html",
+ "snippet": "The capital of China is Beijing.",
+ "date": "Jul 3, 2018",
+ "position": 7
+ },
+ {
+ "title": "A Chinese capital that's not Beijing - BBC Travel",
+ "link": "https://www.bbc.com/travel/article/20151008-a-chinese-capital-thats-not-beijing",
+ "snippet": "Beijing may be the capital of China today, but for many centuries the country was ruled from Nanjing, a historic city located on the shores ...",
+ "date": "Oct 13, 2015",
+ "position": 8
+ },
+ {
+ "title": "Beijing | Province, City, History, Map, & Facts - Britannica",
+ "link": "https://www.britannica.com/place/Beijing",
+ "snippet": "Beijing, city, province-level shi (municipality), and capital of the People's Republic of China. The city has been an integral part of China's history over ...",
+ "position": 9
+ }
+ ],
+ "peopleAlsoAsk": [
+ {
+ "question": "Does China have 2 capitals?",
+ "snippet": "There are traditionally four major historical capitals of China referred to as\nthe 'Four Great Ancient Capitals of China' (simplified Chinese: 中国四大古都;\ntraditional Chinese: 中國四大古都; pinyin: Zhōngguó Sì Dà Gǔ Dū). The four are\nBeijing, Nanjing, Luoyang and Xi\"an (Chang\"an).",
+ "title": "Historical capitals of China - Wikipedia",
+ "link": "https://en.wikipedia.org/wiki/Historical_capitals_of_China"
+ },
+ {
+ "question": "What is the capital city of China USA?",
+ "snippet": "Capital City\nBeijing\nCapital - time difference\nUTC+8 (13 hours ahead of Washington, DC, during Standard Time) note; despite its\nsize, all of China falls within one time zone",
+ "title": "Capital City of China - CountryReports.org",
+ "link": "https://www.countryreports.org/country/china/capital-city.htm"
+ },
+ {
+ "question": "Is Hong Kong is a part of China?",
+ "snippet": "Hong Kong (US: /ˈhɒŋkɒŋ/ or UK: /hɒŋˈkɒŋ/; Chinese: 香港, Cantonese: [hœ́ːŋ.kɔ̌ːŋ]\n( listen)), officially the Hong Kong Special Administrative Region of the\nPeople's Republic of China (abbr. Hong Kong SAR or HKSAR), is a city and a\nspecial administrative region in China.",
+ "title": "Hong Kong - Wikipedia",
+ "link": "https://en.wikipedia.org/wiki/Hong_Kong"
+ },
+ {
+ "question": "Why China changed its capital?",
+ "snippet": "Once in charge, it wasn't uncommon for a new emperor to shift the imperial\ncapital in order to: Rebuild after a great loss, as in the Han era when Liu Bang\nmoved the capital from Xianyang to nearby Chang'an (now Xi'an), after the former\nwas destroyed during a rebellion.",
+ "title": "Why do they keep moving the Capital? - China Simplified",
+ "link": "https://www.chinasimplified.com/2014/09/29/why-do-they-keep-moving-the-capital/"
+ }
+ ],
+ "relatedSearches": [
+ {
+ "query": "China map"
+ },
+ {
+ "query": "Where is the capital of china on a map"
+ },
+ {
+ "query": "Beijing population"
+ },
+ {
+ "query": "Capital of Korea"
+ },
+ {
+ "query": "Beijing pronunciation"
+ },
+ {
+ "query": "What is the capital of India"
+ },
+ {
+ "query": "What is the capital of Japan"
+ },
+ {
+ "query": "What is the capital of Pakistan"
+ }
+ ]
+}
\ No newline at end of file
diff --git a/tests/test_actions/test_builtin_actions.py b/tests/test_actions/test_builtin_actions.py
new file mode 100644
index 0000000000000000000000000000000000000000..0148515f670101945d574f1b14d916721e67b89a
--- /dev/null
+++ b/tests/test_actions/test_builtin_actions.py
@@ -0,0 +1,44 @@
+from unittest import TestCase
+
+from lagent.actions.builtin_actions import FinishAction, InvalidAction, NoAction
+from lagent.schema import ActionStatusCode
+
+
+class TestFinishAction(TestCase):
+
+ def test_call(self):
+ action = FinishAction()
+ response = 'finish'
+ action_return = action(response)
+ self.assertEqual(action_return.state, ActionStatusCode.SUCCESS)
+ self.assertDictEqual(action_return.result, dict(text='finish'))
+
+
+class TestInvalidAction(TestCase):
+
+ def test_call(self):
+ action = InvalidAction()
+ response = 'invalid'
+ action_return = action(response)
+ self.assertEqual(action_return.state, ActionStatusCode.API_ERROR)
+ self.assertEqual(action_return.errmsg, response)
+
+ action = InvalidAction(err_msg='error')
+ action_return = action()
+ self.assertEqual(action_return.state, ActionStatusCode.API_ERROR)
+ self.assertEqual(action_return.errmsg, 'error')
+
+
+class TestNoAction(TestCase):
+
+ def test_call(self):
+ action = NoAction()
+ response = 'no'
+ action_return = action(response)
+ self.assertEqual(action_return.state, ActionStatusCode.API_ERROR)
+ self.assertEqual(action_return.errmsg, response)
+
+ action = NoAction(err_msg='error')
+ action_return = action()
+ self.assertEqual(action_return.state, ActionStatusCode.API_ERROR)
+ self.assertEqual(action_return.errmsg, 'error')
diff --git a/tests/test_actions/test_google_search.py b/tests/test_actions/test_google_search.py
new file mode 100644
index 0000000000000000000000000000000000000000..2688409b62d08e9c0fe40edcfa25f772d2642161
--- /dev/null
+++ b/tests/test_actions/test_google_search.py
@@ -0,0 +1,35 @@
+import json
+from unittest import TestCase, mock
+
+from lagent.actions import GoogleSearch
+from lagent.schema import ActionStatusCode
+
+
+class TestGoogleSearch(TestCase):
+
+ @mock.patch.object(GoogleSearch, '_search')
+ def test_search_tool(self, mock_search_func):
+ mock_response = (200, json.load('tests/data/search.json'))
+ mock_search_func.return_value = mock_response
+ search_tool = GoogleSearch(api_key='abc')
+ tool_return = search_tool.run("What's the capital of China?")
+ self.assertEqual(tool_return.state, ActionStatusCode.SUCCESS)
+ self.assertDictEqual(tool_return.result, dict(text="['Beijing']"))
+
+ @mock.patch.object(GoogleSearch, '_search')
+ def test_api_error(self, mock_search_func):
+ mock_response = (403, {'message': 'bad requests'})
+ mock_search_func.return_value = mock_response
+ search_tool = GoogleSearch(api_key='abc')
+ tool_return = search_tool.run("What's the capital of China?")
+ self.assertEqual(tool_return.state, ActionStatusCode.API_ERROR)
+ self.assertEqual(tool_return.errmsg, str(403))
+
+ @mock.patch.object(GoogleSearch, '_search')
+ def test_http_error(self, mock_search_func):
+ mock_response = (-1, 'HTTPSConnectionPool')
+ mock_search_func.return_value = mock_response
+ search_tool = GoogleSearch(api_key='abc')
+ tool_return = search_tool.run("What's the capital of China?")
+ self.assertEqual(tool_return.state, ActionStatusCode.HTTP_ERROR)
+ self.assertEqual(tool_return.errmsg, 'HTTPSConnectionPool')
diff --git a/tests/test_actions/test_python_interpreter.py b/tests/test_actions/test_python_interpreter.py
new file mode 100644
index 0000000000000000000000000000000000000000..f698c777c6523f140dd86f74730eb3a717225ba0
--- /dev/null
+++ b/tests/test_actions/test_python_interpreter.py
@@ -0,0 +1,21 @@
+from unittest import TestCase
+
+from lagent.actions.python_interpreter import PythonInterpreter
+from lagent.schema import ActionStatusCode
+
+
+class TestPythonInterpreter(TestCase):
+
+ def test_python_executor(self):
+ python_executor = PythonInterpreter()
+ tool_return = python_executor(
+ '```python\ndef solution():\n return 1\n```')
+ self.assertEqual(tool_return.state, ActionStatusCode.SUCCESS)
+ self.assertDictEqual(tool_return.result, dict(text='1'))
+
+ def test_timeout(self):
+ python_executor = PythonInterpreter(timeout=2)
+ tool_return = python_executor(
+ '```python\ndef solution():\n while True:\n pass\n```')
+ self.assertEqual(tool_return.state, ActionStatusCode.API_ERROR)
+ self.assertIn('FunctionTimedOut', tool_return.errmsg)
diff --git a/tests/test_agents/test_rewoo.py b/tests/test_agents/test_rewoo.py
new file mode 100644
index 0000000000000000000000000000000000000000..52fa1ed729d4a9e3544a691876286596bd873354
--- /dev/null
+++ b/tests/test_agents/test_rewoo.py
@@ -0,0 +1,87 @@
+from unittest import TestCase, mock
+
+from lagent.actions import ActionExecutor
+from lagent.actions.llm_qa import LLMQA
+from lagent.actions.serper_search import SerperSearch
+from lagent.agents.rewoo import ReWOO, ReWOOProtocol
+from lagent.schema import ActionReturn, ActionStatusCode
+
+
+class TestReWOO(TestCase):
+
+ @mock.patch.object(SerperSearch, 'run')
+ @mock.patch.object(LLMQA, 'run')
+ @mock.patch.object(ReWOOProtocol, 'parse_worker')
+ def test_normal_chat(self, mock_parse_worker_func, mock_qa_func,
+ mock_search_func):
+ mock_model = mock.Mock()
+ mock_model.generate_from_template.return_value = 'LLM response'
+
+ mock_parse_worker_func.return_value = (['Thought1', 'Thought2'
+ ], ['LLMQA', 'SerperSearch'],
+ ['abc', 'abc'])
+
+ search_return = ActionReturn(args=None)
+ search_return.state = ActionStatusCode.SUCCESS
+ search_return.result = dict(text='search_return')
+ mock_search_func.return_value = search_return
+
+ qa_return = ActionReturn(args=None)
+ qa_return.state = ActionStatusCode.SUCCESS
+ qa_return.result = dict(text='qa_return')
+ mock_qa_func.return_value = qa_return
+
+ chatbot = ReWOO(
+ llm=mock_model,
+ action_executor=ActionExecutor(actions=[
+ LLMQA(mock_model),
+ SerperSearch(api_key=''),
+ ]))
+ agent_return = chatbot.chat('abc')
+ self.assertEqual(agent_return.response, 'LLM response')
+
+ def test_parse_worker(self):
+ prompt = ReWOOProtocol()
+ message = """
+ Plan: a.
+ #E1 = tool1["a"]
+ #E2 = tool2["b"]
+ """
+ try:
+ thoughts, actions, actions_input = prompt.parse_worker(message)
+ except Exception as e:
+ self.assertEqual(
+ 'Each Plan should only correspond to only ONE action', str(e))
+ else:
+ self.assertFalse(
+ True, 'it should raise exception when the format is incorrect')
+
+ message = """
+ Plan: a.
+ #E1 = tool1("a")
+ Plan: b.
+ #E2 = tool2["b"]
+ """
+ try:
+ thoughts, actions, actions_input = prompt.parse_worker(message)
+ except Exception as e:
+ self.assertIsInstance(e, BaseException)
+ else:
+ self.assertFalse(
+ True, 'it should raise exception when the format is incorrect')
+
+ message = """
+ Plan: a.
+ #E1 = tool1["a"]
+ Plan: b.
+ #E2 = tool2["b"]
+ """
+ try:
+ thoughts, actions, actions_input = prompt.parse_worker(message)
+ except Exception:
+ self.assertFalse(
+ True,
+ 'it should not raise exception when the format is correct')
+ self.assertEqual(thoughts, ['a.', 'b.'])
+ self.assertEqual(actions, ['tool1', 'tool2'])
+ self.assertEqual(actions_input, ['"a"', '"b"'])