--- base_model: openai/whisper-tiny datasets: - mozilla-foundation/common_voice_11_0 language: - az license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Az - Pologue results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: az split: None args: 'config: az, split: test' metrics: - type: wer value: 118.18181818181819 name: Wer --- # Whisper Tiny Az - Pologue This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.5076 - Wer: 118.1818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.0177 | 33.3333 | 100 | 1.5076 | 118.1818 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.3.1+cpu - Datasets 2.20.0 - Tokenizers 0.19.1